

Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



# Exploring the Role of Innovation and Perceived Security in Contactless Technology Adoption: Evidence from Contactless Travel Services

Mary Grace Burkett Universidad Complutense de Madrid, Spain

Recuero Virto, Nuria Universidad Complutense de Madrid, Spain

Oniversidad Compideense de Madrid, Spani

Received: 12 June 2025. Revision received: 4 August 2025. Accepted: 9 September 2025

#### **Abstract**

This study offers new empirical insights into how contactless technologies and customer experience shape technology adoption in post-pandemic tourism. By integrating TAM and TPB, the research aims to understand consumer behavioural intentions toward contactless technologies in the tourism sector. A quantitative research approach was adopted, utilising PLS-SEM to analyse survey data from 851 respondents in Spain who have previously used contactless hotel and airline services, using SmartPLS software. This approach was used to examine the relationships between constructs and their corresponding indicators, making it especially appropriate for exploratory research. The results reveal that contactless services significantly enhance perceived security, perceived value, and the customer experience, fostering a positive attitude towards their use. Attitude toward adoption strongly predicts behavioural intentions. By applying TAM and TPB, this study offers new insights into how technological advancements influence perceived security, value, and travel intentions. Expanding on Neuberger and Egger (2021), it shows how innovation helps mitigate pandemic-related risks and enhance tourist confidence, offering guidance for providers of digital and contactless tourism services. The added value of this research lies in integrating TAM and TPB into a framework to analyse the adoption of contactless airline and hotel services, particularly in response to the pandemic. The framework also includes behavioural intentions and willingness to pay for additional security measures.

Key Words: TAM, perceived risks, perceived security, Tourism, Innovation, TPB, contactless services

JEL Classification: M3, O3, O4

**Reference**: Burkett, M. G., & Recuero Virto, N. (2025). Exploring the Role of Innovation and Perceived Security in Contactless Technology Adoption: Evidence from Contactless Travel Services. *Journal of Tourism and Services*, 16(31), 220-244. https://doi.org/10.29036/e68ww460

### 1. Introduction

Tourism's direct contribution to the global gross domestic product reached approximately USD 3.3 trillion in 2023, accounting for 3% of global GDP (UNWTO, 2024). Tourism is a highly labour-intensive industry and ranks among the world's leading job creators (Draskovic et al., 2022). However, the growth of the tourism sector has been significantly disrupted by global crises, including the COVID-19 pandemic and geopolitical conflicts, which have severely restricted individual mobility. The pandemic, in particular, dealt a severe blow to the global travel and tourism industry, resulting in the loss of an estimated 63 million jobs in 2020 (Sharma et al., 2024). This situation highlights the urgent need for innovative solutions to address these dynamic challenges and build resilience in the face of uncertainty (Lupton & Samy, 2022). Through sustainable tourism practices, technological advancements, and



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



adoption of digital transformation (Gavurova et al., 2024), the travel and hospitality industries have been transformed, fostering more secure, efficient, and customer-friendly experiences (Dias et al., 2022).

One of the most significant advancements in recent years has been the rise of contactless services, which aim to minimize in-person interactions while leveraging digital and automated solutions (Li et al., 2021). Prior to the COVID-19 pandemic, the adoption of contactless technologies was already emerging as a key trend in retail and service industries (Li & Huang, 2022). However, the pandemic accelerated their adoption, with industry professionals recognizing their critical role in mitigating risks and enhancing customer confidence. This shift has prompted a growing body of research examining customer responses to contactless service implementations (Chen et al., 2021; Kim et al., 2021, Liu & Yang, 2021).

The accelerated implementation and adoption of new technologies (Habánik et al., 2021), especially in consumer-oriented industries, depends on key psychological determinants that influence users' acceptance decisions. According to Davis (1989), two primary factors - perceived usefulness and perceived ease of use - shape individuals' willingness to embrace technological innovations. These constructs form the foundation of the widely applied Technology Acceptance Model (TAM), which has been extensively implemented and empirically validated by researchers as a robust model for explaining the key determinants of technology adoption and use (Alaeddin et al., 2018). Perceived usefulness is a key predictor of intention to use innovative technology (Herzallah et al., 2022), and it also refers to the extent to which consumers believe that a particular technology enhances their performance or experience (Belanche et al., 2024). In contrast, perceived ease of use pertains to the level of effort consumers expect to exert when using the technology (Davis, 1982; Ma et al., 2024). It's also defined to which a user finds a webpage or interface easy to access and use (Saoula et al., 2023).

This study applies Partial Least Squares Structural Equation Modelling (PLS-SEM) to examine the relationship between perceived risk and innovation in the tourism sector, with a specific focus on the adoption of contactless airline and hotel services in Spain. While perceived risk is acknowledged as a critical external factor influencing technology adoption, it primarily emphasizes potential negative outcomes. This risk-centric perspective tends to overlook the positive aspects—particularly perceived safety, that often drive consumers to adopt digital innovations. By reframing the discussion in terms of perceived security, this research offers a more balanced and insightful understanding of consumer behavior, particularly in the context of post-pandemic travel. The study specifically explores how perceived safety, contactless technology adoption, and the broader impact of the COVID-19 pandemic collectively shape tourists' behavioural intentions toward using contactless travel and hospitality services.

This study is further driven by the critical impact of the COVID-19 pandemic on the adoption of contactless airline and hotel services (Yepez & Leimgruber, 2024). As one of the leading global tourism destinations, Spain's ability to adapt to shifting consumer preferences for safety and convenience is paramount. This aligns with the broader objective of equipping Spanish tourism and hospitality companies with the tools to strengthen market orientation and response effectively to evolving consumer needs.

#### 2. Literature review

This review aims to provide a solid theoretical foundation by examining existing academic work relevant to the adoption of technological innovations in the tourism sector. Specifically, it delves into the existing research on perceived risks and the role of innovation in shaping tourism practices, particularly in response to global health crises such as the COVID-19 pandemic. In this study, perceived risk is assessed in a positive light and reconceptualized as perceived safety, a proactive sense of security experienced by tourists. Tourism safety, in this context, is defined as an emerging discipline focused on the protection and smooth functioning of the tourism system, encompassing both domestic and international destinations (Korstanje, 2020). It emphasizes not only the mitigation of threats but also the



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



creation of conditions in which tourists feel secure and confident. By analysing how pandemics have influenced consumer behaviour and technological adoption, this section seeks to contextualize the evolving dynamics of the tourism industry and highlight critical gaps that this study intends to address.

### 2.1. Technology innovation influence on perceived security, perceived usefulness and ease of use

Technology innovation plays an important role in accelerating industry transformation and advancement. Wu and Liu (2021) highlighted that technological innovation enhances production efficiency, leading to reduced production costs, which in turn drives industry upgrades. Technological innovations harness advancements in fields such as big data, Internet of Things (IoT), and cloud technologies. Among these innovations, contactless technology has emerged as a critical driver of transformation (Manimuthu et al., 2021).

Contactless service refers to a technology-enabled, fully contactless, and disinfected service environment, which is achieved through an integrated package of self-service, robotic services, and Internet of Things (IoT) based implementations. The adoption of online channels surged during the Covid-19 pandemic (Civelek et al., 2021) as service providers accelerated the digitization of processes, such as online check-ins to reduce physical contact, minimize crowding, and maintain safe distances between tourists as well as facial recognition services, virtual assistants and robotic services (Teng et al., 2025).

Such innovations address the main concerns in hospitality service encounters, including touchless smart rooms, robotic services, auto-detection of body temperature, keyless access, and disinfection of public facilities and spaces. Collectively, these features focus around enhancing the customer journey and ensuring safety, efficiency, and convenience (Hao et al., 2023).

In recent years, understanding the risks perceived by tourists has become increasingly important for both tourism researchers and industry stakeholders. These perceived risks can significantly influence tourism decisions, behaviour, and overall satisfaction. Drawing from existing literature, the risks that tourist perceived are: (1) physical risk, the possibility of having a trip that will lead to physical danger or injury (Boksberger et al., 2007); (2) social risk, the possibility that a trip will not confirm to the standard of others (Aschauer, 2010); (3) performance risk, is the possibility that a trip will not provide satisfaction (An et al., 2010); (4) financial risk, is the possibility that the money invested in a trip will be lost (Boksberger et al., 2007); (5) privacy risk, is the potential loss of control over personal information (Featherman & Pavlou, 2003). And lastly, risk of traveling during pandemics (Sanchez-Cañizares et al., 2020).

With the perceived risks, this research intentionally reframes the concept of perceived risk as perceived security to better align with the evolving role of consumer perceptions in driving technological innovation—particularly in the context of contactless services within Spain's tourism industry. While perceived risk is recognized as a foundational external factor influencing the adoption of contactless technologies, this work emphasizes that it primarily highlights potential negative outcomes. However, this risk-oriented perspective falls short in capturing the positive aspect that more accurately reflect consumer motivations for embracing digital innovations within the tourism sector.

Risk is typically defined as the probability of certain adverse events occurring, multiplied by the magnitude of their potential consequences. In contrast, subjective or perceived risk refers to an individual's intuitive judgment of these probabilities and impacts, which may not align with objective assessments. (Larsen et al., 2008). A threat, on the other hand, Perceived threat refers to an individual's subjective assessment of the likelihood of experiencing personal or collective harm (Spiegel & Bodas, 2025).

Unlike perceived risk, which focuses on potential loss, perceived security highlights proactive trust and confidence in service design. Building on this understanding, the present research intentionally reframes perceived risk as perceived security to better align with the evolving role of consumer



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



perceptions in shaping technological innovation, particularly regarding the adoption of contactless services in Spain's tourism industry. While perceived risk is acknowledged as a key external factor influencing the uptake of these technologies, it tends to emphasize the possibility of negative outcomes. This risk-centric approach, however, fails to capture the positive side, namely, the perceived safety and trust, that often underlies consumer motivation to adopt digital innovations in tourism. By shifting the focus toward perceived security, this study offers a more balanced and accurate lens through which to understand consumer behaviour in a post-pandemic tourism context.

Security can be defined as a condition in which threats are absent (Dankiewicz 2022). Perceived security has increasingly been recognized as a pivotal variable in consumer decision-making processes within the context of B2C e-commerce. Accordingly, the long-term viability of B2C business models may depend significantly on a firm's capacity to effectively manage security risks and positively shape consumer perceptions of wireless technologies. This recognition has elevated perceived security to a prominent position in academia. A substantial body of this research is linked to the Technology Acceptance Model (TAM), an established framework in information systems that seeks to explain users' behavioural intentions toward adopting new technologies. Within this model, perceived security functions as an external variable that can substantially influence both the likelihood and the timing of user engagement with technological innovations. (Hartono et al., 2014).

The role of technological innovation in the post-pandemic tourism landscape, particularly in the hotel and airline sectors, contactless services are not merely adopted to reduce risk but are actively marketed and perceived as innovations that enhance safety, hygiene, and convenience (Zhang et al., 2023). Thus, focusing on perceived security allows for a more constructive and innovation-oriented analysis. Rather than viewing consumer behaviour through a lens of avoidance (risk), this approach views it through a lens of confidence and trust, which better reflects the proactive strategies of tourism firms aiming to differentiate themselves through technological enhancements.

In this study, while perceived risk is acknowledged as a foundational external factor influencing the adoption of contactless technologies, it primarily highlights potential negative outcomes. However, this focus does not sufficiently capture the positive aspects, that more accurately reflect consumer motivations for engaging with digital innovations in the tourism sector.

Building on this foundation, the present study explores how technological innovation can mitigate various dimensions of perceived security, particularly in the context of tourism during pandemics. Based on existing theoretical and empirical insights, the following hypothesis is proposed:

H1: Technology innovation significantly and positively influences (a) physical security, (b) financial security, (c) performance security, (d) social security, (e) privacy security, and (e) perceived security of traveling during pandemics.

# 2.2. Technology innovation significantly and positively influences (a) perceived usefulness, and (b) perceived ease of use.

The influence of technology innovation on TAM is an emerging area of study, examining its impact on perceived usefulness and perceived ease of use. For instance, Loh et al. (2019) explored the role of wearable technology in fostering a cashless society. Their research highlights how individuals with high mobile innovativeness actively seek opportunities to explore wearable payment solutions, engaging with these technologies through activities such as visiting mobile technology outlets and testing display units with the guidance of staff. This behaviour underscores their enthusiasm for adopting innovative payment methods, demonstrating the connection between technological innovation and perceived usefulness.

Perceived usefulness refers to the extent to which an individual believes that using a particular will enhance their job performance. This perception is shaped by how effectively the technology enables users to complete tasks more efficiently, boost productivity, and improve overall performance (Davis,



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



1989). Besides, perceived ease of use, in contrast, is the degree to which an individual believes that using a particular system would be free of effort (Alshurafat et al., 2021).

Furthermore, technological innovation also enhances perceived ease of use. Alalwan et al. (2018) found that the introduction of user-friendly interfaces and intuitive functionalities in mobile banking significantly reduced the cognitive effort required to use these technologies. Such advancements simplify interactions, making it easier for users to learn and adopt new systems. This reduction in perceived effort, driven by innovation, directly contributes to greater ease of use. In light of this evidence, it is proposed that:

H2: Technology innovation significantly and positively influences (a) perceived usefulness, and (b) perceived ease of use.

### 2.3. Customer experience influences on perceived value

Perceived experience refers to the way customers interpret and evaluate the experiential aspects of a service, encompassing their subjective feelings, thoughts, and impressions formed during their interactions with the service. This perception plays a crucial role in shaping their overall satisfaction and emotional connection. Ultimately, perceived experience serves as a fundamental prerequisite for fostering customer engagement, as it directly influences their willingness to interact, invest time, and build a lasting relationship with the brand (Konuk, 2019; Paulose & Shakeel, 2021).

The definition of customer perceived value has changed over time (El-Adly, 2019), However the meaning of "value" adopted for this study is "all factors, qualitative, and quantitative, subjective and objective, that make up the complete consumption experience". Based on this definition, customers' perceived value in the hotel and airline context as a multidimensional construct consisting of more dimensions than just price and quality. This also includes self-gratification, aesthetic pleasure, prestige, transaction, and hedonism (El-Adly, 2019).

Research highlights the strong relationship between perceived experience and perceived value. For example, Paulose and Shakeel (2021) explored the relationship between perceived experience, perceived value and customer satisfaction as antecedents to loyalty among hotel guests. Their findings revealed that both perceived experience and perceived value significantly influence customer satisfaction, which, in turn, has a strong impact on customer loyalty.

H3: Customer experience significantly and positively influences perceived value.

# 2.4. Perceived usefulness and perceived ease of use influences on attitude towards using contactless technology

According to Ajzen's (1991) Theory of Planned Behaviour (TPB), behavioural beliefs play a critical role in shaping attitudes toward a behaviour, which can be either favorable or unfavorable. Behavioural intention defines as "the degree to which a person has formulated conscious plans regarding whether to perform a specified future behaviour" (Chai and Dibb, 2014, p3; Esawe 2022). Attitudes are influenced by two key dimensions: the affective dimension (e.g., feelings such as good vs. bad or pleasant vs. unpleasant) and the cognitive dimension, which reflects the utilitarian aspects linked to behavioural beliefs (Fu 2021). These dimensions together provide a holistic understanding of how individuals form attitudes toward specific behaviours.

The TAM extends the TPB by emphasizing the role of perceived usefulness and perceived ease of use in shaping attitudes toward technology adoption. Casalo et al. (2010) explored this relationship in the context of determinants of intention to participate in firm-hosted online tourism communities as well as Balakrishnan et al. (2021) in the context of AI-powered voice assistants (AIVA). Their study found that perceived usefulness, which reflects the degree to which users believe a technology improves their task efficiency, and perceived ease of use, which reflects how effortless users find the technology to use,



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



both significantly influence attitudes toward adopting AIVAs. The findings also highlighted how AI voice assistants simplify users' lives, thus fostering positive attitudes toward their use.

In the context of contactless services, perceived usefulness likely fosters favourable attitudes by emphasizing the convenience, efficiency, and timesaving benefits these services provide. Similarly, perceived ease of use reduces barriers to adoption by making interactions with the technology seamless and straightforward, encouraging a more positive attitude toward its usage (Duy & Giang 2022).

*H4:* Perceived usefulness significantly and positively influences attitudes toward using contactless services.

H5: Perceived ease of use significantly and positively influences attitudes toward using contactless services.

### 2.5. Attitude towards using contactless services influence on behavioural intentions

Behavioural intentions indicate the degree of a person's commitment to carrying out a particular action. The stronger the intention, the higher the likelihood that the behaviour will be performed, (Ajzen, 1991). In the context of recommended products, key consumer behaviour intentions include the intention to follow advice, the intention to purchase, and intention to recommend. These intentions serve as strong predictors of future consumer behaviour (Flavian et al., 2022).

Law (2021) examined the intention to travel, highlighting that risk perception is a pivotal factor influencing tourists' decisions to visit a specific destination. The study argues that heightened perceptions of risk can generate negative word-of-mouth, which may, in turn, harm the destination's image and ultimately deter travel intentions (Farrukh et al., 2020).

Intention to follow advice is conceptualized in the present study as the willingness to act on recommendations, comments, and suggestions from other members through digital media services (such as online tourism communities) when purchasing tourism services. In certain industries, the influence of eWOM plays a pivotal role in shaping consumer decision-making (Ruiz-Mafe et al., 2020)

Recommendation is an action closely linked to post-adoption behaviour, often serving as a significant driver for the successful diffusion of new products and services. In today's digital age, consumer recommendations are readily accessible on the Internet, including e-commerce platforms and social networks. These recommendations can facilitate the rapid spread of technologies and strongly influence the behaviour and attitude of other consumers (Ferreira et al., 2023)

Assessing willingness to pay (WTP) is a valid method for understanding consumers' attitudes and perceptions regarding sustainable features in food products. WTP estimates reflect the price premium or the maximum amount a current or prospective consumer is prepared to pay for a product or services (Li & Kallas, 2021). Recent study indicates that consumers who aim to support socially and environmentally responsible businesses are willing to pay a premium for their products (Farzin et al., 2022).

Attitudes toward using a product or service have been shown to significantly influence behavioural intentions. For example, Adu-Gyamfi et al. (2022) found that attitudes positively impacted adoption intentions for battery swap technology for electric vehicles. Similarly, Almajali et al. (2022) demonstrated that attitudes play a significant role in shaping intentions to use cryptocurrency, as supported by the extended Theory of Reasoned Action (TRA).

Tan et al. (2023) applied the extended TPB to predict willingness to pay for green and low-carbon energy transitions. They found that a positive attitude toward promoting Green and Low-Carbon Energy



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



Transition (GALCET) enhanced consumers' willingness to pay for retrofitting rooftops with solar photovoltaic tiles (SPVT).

H7: Attitudes toward using contactless services significantly and positively influences (a) intention to travel, (b) intention to follow advice, (c) intention to recommend, and (d) willingness to pay more.

## 3. Methodological approach

Data collection took place from November 22 to 25, 2024, via an online survey conducted in Spanish using the Qualtrics platform. Participants were recruited through Toluna, a well-established provider of online panels specializing in market research. The questionnaire included an introductory section that outlined the study's objectives and guaranteed anonymity to encourage truthful responses, following the recommendations of Podsakoff et al. (2003). To ensure relevance, all participants were required to have prior experience using QR codes.

As this research focuses on how tourists in Spain adopt airline and contactless technologies, it further examines the impact of this adoption on their consumer behavior. PLS-SEM is employed to evaluate the relationships between key constructs and their corresponding indicators, making it especially well-suited for this type of exploratory analysis (Amoah et al., 2021). This approach also enables the study to validate the role of contactless technologies in mitigating perceived risks and enhancing perceived security among users. The analysis was performed using SmartPLS version 4.1.1.4, suitable for analysing complex relationships in non-normal datasets and exploratory models, which was confirmed in this study.

The use of PLS-SEM was justified by the non-normal distribution of the data, consistent with Hair et al. (2011). The study analysed 851 valid responses, with statistical power ensured through G\*Power 3.1 analysis, achieving a power level above 99% for the R² test, as recommended by Cohen (2013).

Table 1 shows that the respondents (n=851) exhibited a balanced gender distribution, with 53.8% male and 46.2% female. The majority fell within the 35–54 age range (59.6%), while very few were under 25 (0.2%) or over 65 (1.2%). Educational levels were generally high, with 39.4% holding a graduate degree and 11.3% a master's degree. Vocational training was common (27.5%), while fewer participants had secondary (17.4%) or primary education (0.9%). Employment status revealed that most respondents were employees (72.9%), followed by smaller proportions of self-employed individuals (8.9%), unemployed participants (8.8%), and homemakers (5.2%). Students (1.1%) and retirees (3.2%) represented the smallest categories. Income levels were varied, with 23.2% earning €1000–1500 per month and 20.6% earning over €3000. Regarding contactless technology usage, the majority had experience of 1–3 years (35%) or 4–7 years (31%), while smaller groups reported using it for less than 1 year (19%) or over 10 years (8%).

Characteristics Frequency Percentage Gender Female 393 46.2 Male 458 53.8 Age Under 25 2 0.2 24-34 153 18 35-44 249 29.3 258 45-54 30.3 179 55-64 21

Table 1. Profile of respondents. (n=851)



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz

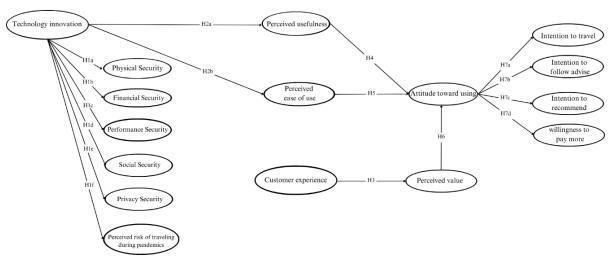


|                     | Over 65           | 10       | 1.2  |
|---------------------|-------------------|----------|------|
| Education           |                   | <u>.</u> |      |
|                     | Primary studies   | 8        | 0.9  |
|                     | Secondary studies | 148      | 17.4 |
|                     | Vocational        | 234      | 27.5 |
|                     | courses           |          |      |
|                     | Graduate          | 335      | 39.4 |
|                     | Master's          | 96       | 11.3 |
|                     | PhD               | 30       | 3.5  |
| Current activity/en | nployment         |          |      |
|                     | Housewife         | 44       | 5.2  |
|                     | Self-employed     | 76       | 8.9  |
|                     | Unemployed        | 75       | 8.8  |
|                     | Employee          | 620      | 72.9 |
|                     | Student           | 9        | 1.1  |
|                     | Retired           | 27       | 3.2  |
| Net monthly incom   | ne                |          |      |
|                     | Less than 1000€   | 98       | 10.4 |
|                     | 1000€ - 1500€     | 218      | 23.2 |
|                     | 1501€ - 2000€     | 200      | 21.3 |
|                     | 2001€ - 2500€     | 143      | 15.2 |
|                     | 2501€ - 3000€     | 88       | 9.4  |
|                     | Over 3000€        | 194      | 20.6 |
| Contactless usage   |                   |          |      |
|                     | Less than 1 year  | 158      | 19   |
|                     | 1-3 years         | 302      | 35   |
|                     | 4-7 years         | 266      | 31   |
|                     | 8-10 years        | 58       | 7    |
|                     | Over 10 years     | 67       | 8    |

Source: Own research

### 3.1. Objectives and hypotheses

The primary objective of using PLS-SEM was to assess and validate the intricate relationships among multiple constructs (Hair, 2006), including perceived security, customer experience, perceived value, attitude, and behavioural intentions in the context of contactless airline and hotel services. Given the study's integration of the TAM and TPB. PLS-SEM enabled the researchers to evaluate both the measurement and structural models simultaneously, ensuring robust validation of hypotheses and the overall conceptual framework.


Figure 1 presents the tested model, incorporating scale items adapted from various prior studies. A seven-point Likert scale was utilized, ranging from 1 (strongly disagree) to 7 (strongly agree). Physical security, financial security, and technology innovation were derived from Ali and Ali (2021), while social security was adapted from Yuan et al. (2021). Performance and privacy risks were based on Yi et al. (2019). Items related to the privacy security of traveling during pandemics, intention to travel, and willingness to pay more were adapted from Sánchez-Cañizares et al. (2020). Customer experience was sourced from Hao and Chon (2021), perceived usefulness and perceived ease of use from Cho et al. (2020), perceived value from Han et al. (2016), attitude toward using from Sukendro et al. (2020), and intention to recommend from Casaló et al. (2018).



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



Figure 1. **Proposed model** 



Source: Own research

Several constructs (physical security, social security, financial security, performance security, privacy security, and privacy security of touristsing during pandemics) were initially associated with perceived risks. However, as mentioned earlier, these constructs were modified to fit the context of this study. To ensure clarity and consistency across the scales, the items were reversed to align with the seven-point Likert scale, thereby enhancing comprehension and maintaining uniformity.

#### 3.2. Metrics

Table 2 shows descriptive statistics revealing positive perceptions of contactless airline and hotel services, with high ratings for physical security, social security, financial security, and performance security, reflecting confidence in safety, cost-effectiveness, and functionality. Innovation constructs like technology innovation and customer experience scored well, emphasizing openness to advanced technologies. High scores for perceived usefulness and ease of use indicate satisfaction with practicality and accessibility. However, lower ratings for pandemic-related security reveal ongoing concerns about tourists safety. Overall, participants show strong acceptance of these services with some reservations.

Table 2. **Descriptive analysis** 

| Constru   | act/Associated Items                                                                                                              | Mean  | Standard  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
|           |                                                                                                                                   |       | Deviation |
| Physica   | ıl security                                                                                                                       |       |           |
| PHS1      | Contactless airline and hotel services lead to some comfortable physical effects due to their functionality and use. <sup>R</sup> | 5.362 | 1.483     |
| PHS2      | Because contactless airline and hotel services are completely safe, I do not concern about potential physical risk. <sup>R</sup>  | 5.167 | 1.425     |
| Social se | ecurity (SOS)                                                                                                                     |       |           |
| SOS1      | Using contactless airline and hotel services does not affect my image in the eyes of other. <sup>R, d</sup>                       | 5.240 | 1.478     |





| SOS2      | Choosing contactless airline and hotel services will fit in well                                                                                | 5.043 | 1.396 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| SOS3      | with my self-image or self-concept. R  Using contactless airline and hotel services may positively                                              | 4.622 | 1.527 |
|           | affect the way other think of me. R, d                                                                                                          |       |       |
|           | l security (FIS)                                                                                                                                | T     |       |
| FIS1      | I think that the conception of touristsing using contactless airline and hotel services would be less expensive than I expected. R,d            | 4.603 | 2.108 |
| FIS2      | I think that an additional fee must not be paid for contactless airline and hotel services. R, d                                                | 5.572 | 1.684 |
| FIS3      | I think that touristsing with contactless airline and hotel services would not involve unexpected extra expenses. R                             | 5.362 | 1.457 |
| Performa  | ance security (PES)                                                                                                                             |       |       |
| PES1      | I think that contactless airline and hotel services would provide me with the level of benefits that I expected it to. R                        | 5.073 | 1.373 |
| PES2      | I think that the information on the contactless hotel will be credible with respect to the real accommodation. R                                | 5.076 | 1.360 |
| PES3      | I think that the sanitation at the airline and hotel accommodation is beyond expectations when using contactless services. R                    | 4.942 | 1.419 |
| PES4      | I think that my request or suggestion at the airline and hotel may be handled promptly when using contactless services. R                       | 5.229 | 1.380 |
| Privacy s | security (PRS)                                                                                                                                  | •     |       |
| PRS1      | Using contactless airline and hotel service may make privacy of payment information controlled. R                                               | 4.966 | 1.466 |
| PRS2      | If I use contactless airline and hotel service, there won't be a possibility that my personal information may be leaked without my knowledge. R | 4.790 | 1.529 |
| PRS3      | If I use contactless airline and hotel services, I do not think hackers or criminals will be able to access my account. R                       | 4.510 | 1.608 |
| Perceive  | d security of touristsing during pandemics (PST)                                                                                                | •     |       |
| PST1      | Given the current situation, I prefer to avoid touristsing to large cities. R                                                                   | 3.898 | 1.913 |
| PST2      | Given the current situation, I prefer to shorten the duration of my potential trips. R                                                          | 3.961 | 1.888 |
| PST3      | I feel more averse to touristsing because of the risk from pandemics. R                                                                         | 3.692 | 1.956 |
| Technolo  | ogy innovation                                                                                                                                  |       |       |
| TEI1      | If I heard about hotel and airline contactless technology, I would look for ways to experiment with it.                                         | 5.065 | 1.358 |
| TEI2      | Among my peers, I am usually the first to explore new technology i.e. contactless tourists.                                                     | 4.420 | 1.661 |
| TEI3      | I like to experiment with new technology, i.e. contactless tourists.                                                                            | 4.831 | 1.477 |
| TEI4      | In general, I am not hesitant to try out new information technologies.                                                                          | 5.031 | 1.390 |
| TEI5      | Compared to my friends, I seek out a lot of information about contactless tourists services.                                                    | 4.542 | 1.608 |





| MDT            | T 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                              | E 0.45  | 4 4 6 4 |
|----------------|---------------------------------------------------------------------------------------------------------------------|---------|---------|
| TEI6           | I would try contactless airline and hotel services even if in my                                                    | 5.067   | 1.461   |
| <u> </u>       | circle of friends nobody has trialed it before.                                                                     |         |         |
|                | er experience (CUX)                                                                                                 | 1 ( ( 2 | 4.400   |
| CUX1           | Voice control (voice detection TV)                                                                                  | 4.663   | 1.403   |
| CUX2           | Motion-sensing                                                                                                      | 4.933   | 1.268   |
| CUX3           | Mobile control                                                                                                      | 4.885   | 1.311   |
| CUX4           | Robotic services (i.e. robotic cleaning service)                                                                    | 4.610   | 1.358   |
| CUX5           | Thermal sensing (airport thermal screening)                                                                         | 4.722   | 1.330   |
| CUX6           | Facial recognition (contactless check-in)                                                                           | 4.973   | 1.389   |
| CUX7           | Auto temperature measurement                                                                                        | 4.848   | 1.371   |
| CUX8           | Camera                                                                                                              | 5.039   | 1.312   |
| CUX9           | 5G network and IoT                                                                                                  | 4.960   | 1.297   |
| Perceive       | d usefulness (PEU)                                                                                                  | •       |         |
| PEU1           | Using contactless airline and hotel services improves my                                                            | 5.007   | 1.387   |
|                | tourists experience.                                                                                                |         |         |
| PEU2           | Using contactless airline and hotel services enhances my                                                            | 5.100   | 1.348   |
| ~ <del>-</del> | effectiveness in touristsing.                                                                                       |         | 5 .5    |
| PEU3           | Using contactless airline and hotel services increases my                                                           | 4.937   | 1.351   |
| 1200           | productivity in touristsing.                                                                                        | 1.237   | 1.551   |
| PEU4           | Using contactless airline and hotel services is useful for                                                          | 5.341   | 1.277   |
| LUT            | touristsing.                                                                                                        | 3.341   | 1.2//   |
| Derceive       | d ease of use (PEE)                                                                                                 |         |         |
| PEE1           | The contactless airline and hotel services is easy to use.                                                          | 5.320   | 1.299   |
| PEE2           | Learning to use contactless airline and hotel services is easy.                                                     | 5.296   | 1.301   |
|                |                                                                                                                     |         |         |
| PEE3           | Instructions to navigate contactless airline and hotel services                                                     | 5.153   | 1.342   |
| D .            | are clear and understandable.                                                                                       |         |         |
|                | d value (PEV)                                                                                                       | 4.070   | 4.0.00  |
| PEV1           | Contactless airline and hotel services offer good value for the                                                     | 4.873   | 1.369   |
| D              | money I spend.                                                                                                      | 1000    |         |
| PEV2           | Contactless airline and hotel services provide a good deal                                                          | 4.939   | 1.391   |
|                | compared to traditional booking (i.e. face-to-face counter).                                                        |         |         |
|                | towards using (ATU)                                                                                                 |         |         |
| ATU1           | Using contactless airline and hotel services is a good idea for                                                     | 5.174   | 1.393   |
|                | touristsing.                                                                                                        |         |         |
| ATU2           | I think the use of contactless airline and hotel services is a                                                      | 5.255   | 1.266   |
|                | trend when touristsing.                                                                                             |         |         |
| ATU3           | Contactless airline and hotel services will be compatible with                                                      | 5.368   | 1.225   |
|                | smart devices I use when touristsing.                                                                               |         |         |
| Intentior      | n to tourists (INT)                                                                                                 |         |         |
| INT1           | I intend to tourists as soon as I can.                                                                              | 5.442   | 1.449   |
| INT2           | If I need to tourists for work in the short/medium term, I                                                          | 4.981   | 1.726   |
|                | intend to do so.                                                                                                    |         |         |
| INT3           | If I need to tourists for leisure in the short/medium term, I                                                       | 5.592   | 1.365   |
| . •            | intend to do so.                                                                                                    |         |         |
| т , , , ,      | n to recommend (ITR)                                                                                                |         |         |
| INTENTION      | 1 10 10001111110110 (1111)                                                                                          |         |         |
|                | I would likely recommend contactless sirling and hotal                                                              | 5 1 2 3 | 1 388   |
| ITR1           | I would likely recommend contactless airline and hotel services to friends and relatives interested in touristsing. | 5.183   | 1.388   |



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



| ITF1      | I would feel comfortable using contactless hotel and airline    | 5.239 | 1.356 |
|-----------|-----------------------------------------------------------------|-------|-------|
|           | services as advised by peers and reviews.                       |       |       |
| ITF2      | I would not hesitate to take into account the suggestions       | 5.311 | 1.275 |
|           | about the use of contactless airline and hotel services as      |       |       |
|           | advised by peers and reviews.                                   |       |       |
| ITF3      | I would feel secure in following suggestions about using        | 5.280 | 1.330 |
|           | contactless airline and hotel services.                         |       |       |
| ITF4      | I would rely on the recommendations about using contactless     | 5.337 | 1.299 |
|           | airline and hotel services.                                     |       |       |
| Willingne | ess to pay (WTP)                                                |       |       |
| WTP1      | I am willing to pay more for additional safety measures for the | 4.270 | 1.792 |
|           | contactless airline and hotel services that serve me during my  |       |       |
|           | possible trips.                                                 |       |       |
| WTP2      | I am willing to pay more for additional safety measures in the  | 4.276 | 1.803 |
|           | contactless airline and hotel I use, during my potential trips. |       |       |
| WTP3      | I am willing to pay more for additional safety measures on the  | 4.333 | 1.830 |
|           | means of technology use during my potential trips.              |       |       |
|           |                                                                 |       |       |

Note: Reversed item. Dropped during the estimation of the measurement model Source: Own research

### 3.3. Results: Reliability and validity evaluation

The evaluation of the measurement model focused on reliability and validity. Items SOS1, SOS3 (social security), and FIS1, FIS2 (financial security) were excluded for failing to meet the 0.7 loading threshold, as per Hair et al. (2011). Construct reliability was confirmed through Cronbach's alpha and composite reliability coefficients, all exceeding established thresholds, ensuring consistent measurement of constructs (Hair et al., 2006; Bagozzi & Yi, 1988; Fornell & Larcker, 1981).

Convergent validity was supported by AVE values surpassing the 0.50 benchmark (Fornell & Larcker, 1981). Discriminant validity was verified using AVE comparisons, confirming constructs' distinctiveness, and further supported by the HTMT ratio, with all values below 0.90 (Henseler et al., 2016; Teo et al., 2008). These evaluations underscore the robustness of the measurement model, as detailed in Tables 3 and 4.

Table 1. Reliability and convergent validity of the final measurement model

| Factor              | Indicator | Standardized loading | t-Value | CA    | rho_A | CR    | AVE   |
|---------------------|-----------|----------------------|---------|-------|-------|-------|-------|
| Attitude towards    | ATU1      | 0.885                | 41.824  | 0.862 | 0.862 | 0.915 | 0.783 |
| using               | ATU2      | 0.884                | 44.145  |       |       |       |       |
|                     | ATU3      | 0.885                | 35.670  |       |       |       |       |
| Customer experience | CUX1      | 0.791                | 29.748  | 0.925 | 0.926 | 0.938 | 0.626 |
| 1                   | CUX2      | 0.847                | 31.689  |       |       |       |       |
|                     | CUX3      | 0.803                | 25.567  |       |       |       |       |
|                     | CUX4      | 0.762                | 21.948  |       |       |       |       |
|                     | CUX5      | 0.819                | 25.962  |       |       |       |       |
|                     | CUX6      | 0.799                | 24.795  |       |       |       |       |
|                     | CUX7      | 0.802                | 24.363  |       |       |       |       |
|                     | CUX8      | 0.767                | 23.854  |       |       |       |       |
|                     | CUX9      | 0.728                | 17.850  |       |       |       |       |



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



| Financial security               | FIS3 | 1.000 | n/a    |           |              |                                  |        |
|----------------------------------|------|-------|--------|-----------|--------------|----------------------------------|--------|
| Intention to tourists            | INT1 | 0.886 | 21.074 | 0.784     | 0.796        | 0.876                            | 0.703  |
|                                  | INT2 | 0.732 | 16.141 |           |              |                                  |        |
|                                  | INT3 | 0.887 | 22.877 |           |              |                                  |        |
| Intention to follow              | ITF1 | 0.874 | 40.440 | 0.915     | 0.915        | 0.940                            | 0.796  |
| advice                           | ITF2 | 0.892 | 41.462 |           |              |                                  |        |
|                                  | ITF3 | 0.901 | 48.703 |           |              |                                  |        |
|                                  | ITF4 | 0.901 | 44.155 |           |              |                                  |        |
| Intention to recommend           | ITR1 | 1.000 | n/a    |           |              |                                  |        |
| Perceived ease of use            | PEE1 | 0.876 | 34.963 | 0.911     | 0.913        | 0.937                            | 0.789  |
| T CTCCTY CCC CAUCE OT GOO        | PEE2 | 0.891 | 38.252 | 017       | 317 - 2      |                                  | 011,07 |
|                                  | PEE3 | 0.902 | 61.917 |           |              |                                  |        |
|                                  | PEE4 | 0.884 | 48.447 |           |              |                                  |        |
| Performance security             | PES1 | 0.816 | 26.181 | 0.839     | 0.841        | 0.892                            | 0.675  |
| i errormance security            | PES2 | 0.867 | 31.742 |           |              |                                  |        |
|                                  | PES3 | 0.808 | 26.163 |           |              |                                  |        |
|                                  | PES4 | 0.792 | 22.273 |           |              |                                  |        |
| Perceived usefulness             | PEU1 | 0.884 | 50.557 | 0.901     | 0.902        | 0.931                            | 0.772  |
| Tereerved doctament              | PEU2 | 0.915 | 49.028 | 017 0 2   | 017 02       |                                  | 311.1  |
|                                  | PEU3 | 0.856 | 46.892 |           |              |                                  |        |
|                                  | PEU4 | 0.858 | 42.092 |           |              |                                  |        |
| Perceived value                  | PEV1 | 0.919 | 48.008 | 0.813     | 0.813        | 0.915                            | 0.843  |
|                                  | PEV2 | 0.917 | 38.656 | 0.000     | 3132         | 017                              | 0.0.0  |
| Physical security                | PHS1 | 0.890 | 22.706 | 0.748     | 0.748        | 0.888                            | 0.799  |
| ,                                | PHS2 | 0.897 | 34.994 |           |              |                                  |        |
| Privacy security                 | PRS1 | 0.856 | 29.990 | 0.823     | 0.838        | 0.894                            | 0.738  |
| 1 11 wey seediley                | PRS2 | 0.911 | 18.481 |           |              |                                  |        |
|                                  | PRS3 | 0.806 | 19.753 |           |              |                                  |        |
| Perceived security of            | PST1 | 0.923 | 18.626 | 0.903     | 0.910        | 0.939                            | 0.837  |
| touristsing during               | PST2 | 0.936 | 12.615 |           |              |                                  |        |
| pandemics                        | PST3 | 0.886 | n/a    |           |              |                                  |        |
| Social security                  | SOS2 | 1.000 | 46.500 |           |              |                                  |        |
| Technology                       | TEI1 | 0.799 | 23.188 | 0.901     | 0.906        | 0.924                            | 0.669  |
| innovation                       | TEI2 | 0.806 | 42.290 | 017 0 2   | 017 0 0      |                                  | 01007  |
|                                  | TEI3 | 0.878 | 34.274 |           |              |                                  |        |
|                                  | TEI4 | 0.814 | 23.020 |           |              |                                  |        |
|                                  | TEI5 | 0.801 | 35.422 |           |              |                                  |        |
|                                  | TEI6 | 0.808 | 43.582 |           |              |                                  |        |
| Willingness to pay               | WTP1 | 0.943 | 48.512 | 0.949     | 0.950        | 0.967                            | 0.907  |
|                                  | WTP2 | 0.960 | 46.758 | 0.7 17    | 0.750        | 0.201                            | 0.201  |
|                                  | WTP3 | 0.954 | 22.552 |           |              |                                  |        |
| : All loadings are significant a |      |       |        | composite | roliobility: | $\frac{1}{\Delta VE} = \alpha x$ | 70#000 |

*Note*: All loadings are significant at p < .01 level. CA = Cronbach's alpha; CR = composite reliability; AVE = average variance extracted.

Source: Own research



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



Table 2. Measurement Model Discriminant Validity (HTMT and Fornell-Larcker).

| Fac    |             |           |           |           |           |           |           |           |           |           |           |           |           |                |           |           |           |
|--------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------------|-----------|-----------|-----------|
| tor    |             | 1         | 2         | 3         | 4         | 5         | 6         | 7         | 8         | 9         | 10        | 11        | 12        | 13             | 14        | 15        | 16        |
| 1      | A<br>T<br>U | 0.8<br>85 | 0.6<br>39 | 0.5<br>04 | 0.4<br>94 | 0.7<br>71 | 0.6<br>79 | 0.7<br>81 | 0.7<br>02 | 0.7<br>88 | 0.7<br>18 | 0.5<br>92 | 0.5<br>41 | 0.0<br>85      | 0.5<br>39 | 0.6<br>70 | 0.3<br>49 |
| 2      | C<br>U<br>X | 0.7<br>15 | 0.7<br>91 | 0.3<br>85 | 0.4<br>64 | 0.6<br>69 | 0.5<br>75 | 0.6<br>37 | 0.6<br>23 | 0.7<br>01 | 0.6<br>70 | 0.5<br>02 | 0.5<br>56 | 0.3<br>26      | 0.5<br>06 | 0.7<br>09 | 0.5<br>16 |
| 3      | FI<br>S     | 0.5<br>43 | 0.4<br>01 | 1.0<br>00 | 0.3<br>34 | 0.4<br>87 | 0.4<br>06 | 0.5<br>12 | 0.5<br>87 | 0.5<br>13 | 0.4<br>18 | 0.4<br>79 | 0.4<br>70 | 0.0<br>95      | 0.4<br>03 | 0.4<br>39 | 0.1<br>80 |
| 4      | IN<br>T     | 0.5<br>98 | 0.5<br>48 | 0.3<br>75 | 0.8<br>38 | 0.5<br>39 | 0.5<br>25 | 0.5<br>12 | 0.4<br>07 | 0.5<br>08 | 0.4<br>19 | 0.4       | 0.2<br>68 | -<br>0.0<br>85 | 0.3<br>92 | 0.5<br>00 | 0.2<br>38 |
| 5      | IT<br>F     | 0.8<br>69 | 0.7<br>26 | 0.5<br>10 | 0.6<br>34 | 0.8<br>92 | 0.7<br>75 | 0.7<br>49 | 0.6<br>62 | 0.7<br>64 | 0.6<br>97 | 0.5<br>80 | 0.5<br>69 | 0.1<br>09      | 0.5<br>68 | 0.6<br>89 | 0.4<br>05 |
| 6      | IT<br>R1    | 0.7<br>31 | 0.5<br>97 | 0.4<br>06 | 0.5<br>90 | 0.8<br>11 | 1.0       | 0.6<br>85 | 0.5<br>71 | 0.7<br>10 | 0.6<br>46 | 0.5<br>44 | 0.4<br>59 | 0.0<br>76      | 0.5<br>28 | 0.6<br>37 | 0.3<br>77 |
| 7      | PE<br>E     | 0.8<br>82 | 0.6<br>93 | 0.5<br>37 | 0.6<br>05 | 0.8<br>19 | 0.7<br>16 | 0.8<br>88 | 0.6<br>57 | 0.7<br>75 | 0.7<br>08 | 0.5<br>98 | 0.5<br>56 | 0.0<br>94      | 0.5<br>33 | 0.6<br>94 | 0.3<br>32 |
| 8      | PE<br>S     | 0.8       | 0.7       | 0.6       | 0.5       | 0.7<br>55 | 0.6       | 0.7<br>51 | 0.8       | 0.7       | 0.6<br>78 | 0.6       | 0.6       | 0.2            | 0.6       | 0.6       | 0.4       |
| 9      | PE<br>U     | 0.8       | 0.7<br>67 | 0.5       | 0.6       | 0.8       | 0.7       | 0.8       | 0.8       | 0.8<br>79 | 0.7<br>49 | 0.6       | 0.5<br>91 | 0.1            | 0.6       | 0.7       | 0.4       |
| 10     | PE          | 0.8       | 0.7       | 0.4       | 0.5       | 0.8       | 0.7       | 0.8       | 0.8       | 0.8       | 0.9       | 0.5       | 0.6       | 0.2            | 0.5       | 0.6       | 0.5       |
| 11     | V<br>P      | 57<br>0.7 | 72        | 0.5       | 29<br>0.5 | 08        | 16<br>0.6 | 0.7       | 0.8       | 75<br>0.7 | 18<br>0.6 | 0.8       | 0.5       | 0.1            | 0.6       | 0.5       | 0.2       |
| 11     | HS          | 37        | 03        | 53        | 21        | 01        | 30        | 26        | 03        | 66        | 79        | 94        | 27        | 02             | 10        | 51        | 74        |
| 12     | PR<br>S     | 0.6<br>28 | 0.6       | 0.5<br>09 | 0.3       | 0.6<br>43 | 0.4<br>93 | 0.6<br>27 | 0.7<br>89 | 0.6<br>73 | 0.7<br>48 | 0.6<br>55 | 0.8<br>59 | 0.3<br>51      | 0.4<br>82 | 0.5<br>93 | 0.4<br>43 |
| 13     | PS<br>T     | 0.0<br>98 | 0.3<br>56 | 0.0<br>98 | 0.1<br>66 | 0.1<br>17 | 0.0<br>78 | 0.1       | 0.2<br>99 | 0.1<br>40 | 0.2<br>70 | 0.1<br>21 | 0.4<br>21 | 0.9<br>15      | 0.1<br>14 | 0.2<br>61 | 0.4<br>14 |
| 14     | SO<br>S     | 0.5       | 0.5       | 0.4       | 0.4       | 0.5<br>95 | 0.5<br>28 | 0.5<br>59 | 0.6<br>59 | 0.6       | 0.5<br>89 | 0.7       | 0.5       | 0.1            | 1.0       | 0.6       | 0.3       |
| 15     | TE          | 0.7       | 0.7       | 0.4       | 0.5       | 0.7       | 0.6       | 0.7       | 0.7       | 0.8       | 0.7       | 0.6       | 0.6       | 0.2            | 0.6       | 0.8       | 0.5       |
| 16     | I<br>W      | 45<br>0.3 | 73        | 53        | 97        | 48<br>0.4 | 0.3       | 54<br>0.3 | 50        | 0.4       | 98<br>0.5 | 0.3       | 76        | 97<br>0.4      | 0.3       | 18<br>0.5 | 0.9       |
| N.t. D | TP          | 84        | 51        | 84        | 84        | 34        | 87        | 54        | 80        | 42        | 82        | 23        | 09        | 49             | 09        | 61        | 52        |

Note: Diagonal values are Fornell-Larcker square root.

Source: Own research

## 3.4. Results: Structural model

The model's explanatory power was assessed using R<sup>2</sup> values, with all dependent constructs exceeding the 0.10 threshold recommended by Falk and Miller (1992), indicating sufficient explanatory strength. Predictive relevance was confirmed through Stone-Geisser's Q<sup>2</sup> values, calculated using the blindfolding technique with an omission distance of 10. The positive Q<sup>2</sup> values validate the model's ability



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



to predict outcomes. A detailed breakdown of these indicators is presented in Table 5. Results for these indicators are detailed in Table 6.

Table 3. Evaluation of the estimated models

| Concept | $\mathbb{R}^2$ | $Q^2$ |
|---------|----------------|-------|
| ATU     | 0.658          | 0.479 |
| FIS     | 0.193          | 0.190 |
| INT     | 0.269          | 0.240 |
| ITF     | 0.617          | 0.498 |
| ITR1    | 0.520          | 0.406 |
| PEE     | 0.482          | 0.480 |
| PES     | 0.436          | 0.433 |
| PEU     | 0.535          | 0.533 |
| PEV     | 0.449          | 0.446 |
| PHS     | 0.304          | 0.301 |
| PRS     | 0.352          | 0.349 |
| PST     | 0.068          | 0.065 |
| SOS     | 0.360          | 0.359 |
| WTP     | 0.264          | 0.221 |

Source: Own research

Bootstrapping, using individual sign changes across 5,000 samples, was conducted to determine the statistical significance of the hypothesized relationships. The results demonstrate that technology innovation significantly impacts various security dimensions, including physical security, financial security, performance security, social security, privacy security, and perceived security of touristsing during pandemics (H1a-H1f;  $\beta$  = 0.029, 0.032, 0.024, 0.025, 0.029, 0.037, respectively). Additionally, technology innovation positively influences perceived usefulness and perceived ease of use (H2a, H2b;  $\beta$  = 0.019, 0.022). Furthermore, customer experience was found to have a positive effect on perceived value (H3;  $\beta$  = 0.024). Perceived usefulness, perceived ease of use, and perceived value were also observed to have a significant positive effect on the attitude towards using contactless services (H4, H5, H6;  $\beta$  = 0.047, 0.053, 0.042). Finally, attitude towards using contactless services significantly influenced subsequent behavioural intentions, such as intention to tourists, intention to follow advice, intention to recommend, and willingness to pay more for additional safety measures (H7a-H7d;  $\beta$  = 0.034, 0.020, 0.024, 0.034). All relationships were found to be statistically significant, with p-values below the 0.01 threshold.

Table 4. Hypotheses testing

| Hypothesis | Path                                          | Standarized Path Coefficients | t-Value<br>(Bootstrap) | P values |
|------------|-----------------------------------------------|-------------------------------|------------------------|----------|
| H1a        | Technology innovation -> Physical security    | 0.029                         | 19.223                 | 0.000    |
| H1b        | Technology innovation -> Financial security   | 0.032                         | 13.548                 | 0.000    |
| H1c        | Technology innovation -> Performance security | 0.024                         | 27.090                 | 0.000    |
| H1d        | Technology innovation -> Social security      | 0.025                         | 23.860                 | 0.000    |



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



| H1e | Technology innovation -> Privacy security                                   | 0.029 | 20.322 | 0.000 |
|-----|-----------------------------------------------------------------------------|-------|--------|-------|
| H1f | Technology innovation -> Perceived security of touristsing during pandemics | 0.037 | 7.083  | 0.000 |
| H2a | Technology innovation -> Perceived usefulness                               | 0.019 | 37.649 | 0.000 |
| H2b | Technology innovation -> Perceived ease of use                              | 0.022 | 32.201 | 0.000 |
| Н3  | Customer experience -> Perceived value                                      | 0.024 | 27.776 | 0.000 |
| H4  | Perceived usefulness -> Attitude toward using                               | 0.047 | 7.772  | 0.000 |
| H5  | Perceived ease of use -> Attitude toward using                              | 0.053 | 6.980  | 0.000 |
| Н6  | Perceived value -> Attitude toward using                                    | 0.042 | 4.338  | 0.000 |
| Н7а | Attitude toward using -> Intention to tourists                              | 0.034 | 14.477 | 0.000 |
| H7b | Attitude toward using -> Intention to follow advice                         | 0.020 | 38.217 | 0.000 |
| Н7с | Attitude toward using -> Intention to recommend                             | 0.024 | 27.857 | 0.000 |
| H7d | Attitude toward using -><br>Willingness to pay more                         | 0.034 | 10.419 | 0.000 |

Note: All loadings are significant at p < .01 level.

Source: Own research

### 4. Discussion

This study provides significant theoretical contributions, especially in the areas of technology innovation, perceived risks, and consumer behaviour in the context of contactless services. By incorporating theoretical frameworks from TAM and the TPB, it offers new insights into how technological advancements shape perceived security, perceived value, and behavioural intentions in the tourist's industry. A recent study reveal that the critical role of the TAM constructs (perceived usefulness and perceived ease of use) is identified having significant influence of perceived security and trust on users' attitudes and intentions (Shin, 2009; Alaeddin et al., 2018), making it appropriate to incorporate in this research.

The first contribution of this study is concerning the significant impact of technology innovation on various aspects of perceived security, including physical, financial, performance, social, and privacy security, and the perceived security of traveling during pandemics. While prior research has explored how innovation reduces uncertainty (Shin & Kang, 2020; Makki et al., 2016), this study advances the discussion by empirically validating the role of technology-driven security features in shaping consumer confidence in contactless services. The findings highlight that technological solutions, such as keyless entry, robotic sanitation, effectively reduce perceived risks and enhance user's trust, supporting hypotheses from H1a to H1f.

The second main contribution of this research is its regarding the positive impact of technology innovation on perceived usefulness and perceived ease of use, fundamental constructs of the TAM. While



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



this aligns with previous research (Loh et al., 2019; Alalwan et al., 2018), it specifically highlights the impact within the context of contactless travel services. The findings reinforce that technological advancements not only improve efficiency but also minimize cognitive effort, facilitating a smoother adoption process, supporting the hypothesis H2a and H2b.

The third major contribution of this study lies in the exploration of customer experience and its influence on perceived value (H3). While prior research emphasizes the role of perceived experience in service settings (Paulose & Shakeel, 2021), this study specifically situates it within the context of contactless airline and hotel services. The findings reveal that customer interactions with features such as mobile-controlled check-ins, robotic services, and biometric authentication enhance perceived value, further reinforcing the connection between experiential satisfaction and consumer decision-making.

The fourth theoretical contribution centres on the determinants of attitude of behavioural intention. In line with TPB and TAM, this study confirms that perceived usefulness, perceived ease of use, and perceived value play a crucial role in shaping attitudes toward using contactless services (H4-H6). These attitudes, in turn significantly influence behavioural intentions, including the intention to travel, follow advice, intention to recommend, and willingness to pay more for additional security services (H7a-H7d). These findings provide empirical validation for the integration of TAM and TPB, demonstrating how attitudes toward using technological service drive consumers' behaviour in the travel industry. This finding corroborates with the recent study at the time of this research by Khajehshahkoohi et al. (2022), regarding the factors affecting the behavioural intention of tourists on the use of bike sharing in tourism areas. The authors combined the TAM and the TPB, their research highlights that a well-designed bike sharing system with user-friendly technology and environmental benefits can enhance tourists' willingness to adopt them, supporting sustainable tourism initiatives.

Finally, this study makes a significant contribution by connecting technology acceptance with pandemic-related security concerns. While previous research (Neuberger & Egger, 2021) highlights the influence of perceived risks on travel behaviour, this study expands on their findings by demonstrating how technology innovation helps mitigate these risks and encourages greater travel intentions. By establishing these connections, the research provides valuable insights for service providers seeking to enhance consumer confidence in digital and contactless tourism solutions.

### 5. Conclusion

Quantitative analysis using PLS-SEM to assess the relationships between constructs and their associated indicators, making it particularly suitable for exploratory research (Amoah et al., 2021), and validates the role of contactless technologies in addressing perceived risks and subsequently enhancing perceived security. It reinforces the relevance of TAM by demonstrating that innovations influence both perceived usefulness and perceived ease of use, facilitating adoption. This research highlights the importance of enhanced customer experience while using contactless technologies, in driving perceived value. By integrating TAM and TPB, the study shows that consumer attitude significantly shapes behavioural intentions, including travel intentions, intention to recommend contactless technologies, intention to follow advice, and willingness to pay for additional safety measures through contactless technologies.

### 5.1. Practical implications

The findings of this study offer practical implications for tourism and hospitality professionals managing contactless services. Prioritizing advanced security features can add value to the customer experience and facilitates loyalty of customers (Gupta et al., 2023).



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



Developers of these contactless services, such as mobile applications to carry out hotel and airline-check-ins should be meticulous in designing interface and the customer journey with the objective of making it more user-friendly (Medeiros et al., 2022), ensuring ease of use are crucial for improving customer experience and perceived value. Emphasizing the benefits of contactless services, such as convenience and efficiency, can encourage adoption. Hotel and airline mobile applications can also include real-time weather information, and airport e-maps available in airline applications to expedite the flight transfers of tourists; these features already exist in smart tourism as detailed by Tavitiyaman et al. (2021).

Managers should recognize that customers' past experiences with technology play a crucial role in shaping their willingness to adopt and use similar technologies in the future (Shin et al., 2021). A seamless and positive experience with travel apps (whether it would be hotel digital check-ins or airline flight management app) can increase confidence and encourage repeat usage. Subsequently, frustrations with complex interfaces or unreliable technology may lead to reluctance in adopting new travel-related innovations. By understanding how past experiences shape tourists' behavioural intentions, businesses can develop targeted marketing strategies that enhance engagement and adoption.

For example, airline companies can highlight their app's user-friendly features, offer personalized recommendations, provide easy access customer support, or showcase positive reviews to reassure hesitant tourists. Aligning marketing efforts with tourists' technological experiences can ultimately drive high adoption of digital travel solutions and improve customer satisfaction (Lai & Chen, 2011). Furthermore, based on this study, when tourists feel positive in using contactless technologies, this attitude depends on their past experience, and the functionality of the i.e. airline applications, whether it is easy to use and perceived as useful, the customer is willing to pay more for additional cost of innovation to improve their experience.

In the post-pandemic era, professionals should innovate and adapt services to meet evolving preferences. Collaborating with technology providers can help companies stay competitive. Hotels need to promote keyless entry, and their strict compliance with hygiene protocols to improve their guests' perceived security to stay in their premises. Airlines should also emphasize on their data privacy as they deal with passengers' personal data in each transactions and when using contactless boarding.

By considering these implications, industry stakeholders can enhance customer satisfaction and drive business growth.

#### 5.2. Limitations and future research areas

It is essential to recognize the limitations of this study as they provide a foundation for future research endeavours. Firstly, this research focuses on specific relationships within a proposed model, leaving several connections unexplored. Building on previous insights of studies such as contactless services by Hao (2022), Davis et al.'s Technology Acceptance Model (1989), and Ajzen's Theory of Planned Behaviour (1991). Future research could further examine the nuanced relationships within the TAM and TPB framework. Notably, this study did not explore certain aspects of TPB, such as subjective to norm and perceived behavioural control. Future studies could delve into unexplored links to provide a more comprehensive understanding of user behaviour in the context of contactless services, not limited to hotel and airline industries.

Additionally, other potential connections deserve further explorations. Hao (2022) examined the acceptance of contactless technology in the hospitality industry, using UTAUT and UTAUT2 linking to behavioural intentions. Future studies can use the same framework but involving contactless airline services.

Moreover, this study's sample was limited to Spain. Future research could explore different countries or conduct regional comparisons to assess how socio-demographic as mediating factors influence decision-making in adopting contactless technologies.



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



In conclusion, while this study provides valuable insights into contactless airline and hotel services, there remain uncharted territories and evolving behaviours that warrant further exploration. Acknowledging the importance of addressing these limitations and uncharted territories, future studies should aim to build on the behavioural intervention strategies presented in this research, extending their application to a broader range of tourist settings and behaviours, ultimately contributing to the innovation of the travel industry.

### References

- 1. Adu-Gyamfi, G., Song, H., Obuobi, B., Nketiah, E., Wang, H. & Cudjoe, D. (2022). Who will adopt? Investigating the adoption intention for battery swap technology for electric vehicles. Renewable and Sustainable Energy Reviews, 156, 111979. doi:10.1016/j.rser.2021.111979
- 2. Alaeddin, O., Altounjy, R., Zainudin Z., et al. (2018). From physical to digital: Investigating consumer behaviour of switching to mobile wallet. *Polish Journal of Management Studies*, 17(2), 18-30. doi:10.17512/pjms.2018.17.2.02.
- 3. Alalwan, A.A., Dwivedi, Y.K., Rana, N.P. & Algharabat, R. (2018). Examining factors influencing Jordanian customers' intentions and adoption of internet banking: Extending UTAUT2 with risk. *Journal of Retailing and Consumer Services, 40*, 125-138. doi:10.1016/j.jretconser.2017.08.026
- 4. Ali, L., & Ali, F. (2021). Perceived risks related to unconventional restaurants: A perspective from edible insects and live seafood restaurants. *Food Control*, *131*, 108471. doi: 10.1016/j.foodcont.2021.108471
- Almajali, D.A., Masa Deh, R. & Dahalin, Z.M. (2022). Factors influencing the adoption of Cryptocurrency in Jordan: An application of the extended TRA model. *Cogent Social Sciences*, 8, 2103901. doi:10.1080/23311886.2022.2103901
- Alshurafat, H., Al Shbail, M.O., Masadeh, W.M., Dahmash, F. & Al-Msiedeen, J.M. (2021). Factors affecting online accounting education during the COVID-19 pandemic: an integrated perspective of social capital theory, the theory of reasoned action and the technology acceptance model. *Education and Information Technologies*, 26, 6995-7013. doi:10.1007/s10639-021-10550-y
- 7. Amoah, J., Jibril, A. B., Luki, B. N., Odei, M. A., & Yawson, C. (2021). Barriers of SME's sustainability in Sub-Saharan Africa: A PLS-SEM Approach. *International Journal of Entrepreneurial Knowledge*, *9*(1), 10–24. doi:10.37335/ijek.v9i1.129
- 8. An, M., Lee, C., & Noh, Y. (2010). Risk factors at the travel destination: their impact on air travel satisfaction and repurchase intention. *Service Business*, 4, 15-166. doi:10.1007/s11628-010-0094-2
- 9. Aschauer, W. (2010), Perceptions of tourists at risky destinations. A model of psychological influence factors. *Tourism Review*, 65(2), 4-20. doi:10.1108/16605371011061589
- 10. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. doi:10.1016/0749-5978(91)90020-T
- 11. Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. *Journal of the Academy of Marketing Science*, 16(1), 74–94. doi:10.1007/bf02723327
- Balakrishnan, J., Dwivedi, Y., Hughes, L. & Boy, F. (2024). Enablers and Inhibitors of AI-Powered Voice Assistants: A Dual-Factor Approach by Integrating the Status Quo Bias and Technology Acceptance Model. *Information Systems Frontiers*, 26, 921-942. doi:10.1007/s10796-021-10203-y
- 13. Belanche, D., Casaló, L.V. & Flavián, M. (2024). Human versus virtual influences, a comparative study. *Journal of Business Research*, 173, 114493. doi:10.1016/j.jbusres.2023.114493
- 14. Boksberger, P., Bieger, T., & Laesser, C. (2007). Multidimensional analysis of perceived risk in commercial air travel. *Journal of Air Transport Management*, 13, 90-96. doi:10.1016/j.jairtraman.2006.10.003





- 15. Cano, S. & Salzberger, T. (2017). Measuring risk perception consumer perceptions of product risks and benefits. *Springer International Publishing*, 191-200. doi:10.1007/978-3-319-50530-5\_10
- Casaló, L.V., Flavián, C. & Guinalíu, M. (2010). Determinants of the intention to participate in firm-hosted online travel communities and effects on consumer behavioral intentions. *Tourism Management*, 31, 898-911. doi:10.1016/j.tourman.2010.04.007
- 17. Casaló, L.V., Flavián, C., & Ibáñez-Sánchez, S. (2018). Influencers on Instagram: Antecedents and consequences of opinion leadership. *Journal of Business Research*, 117, 510–519. doi:10.1016/j.jbusres.2018.07.005
- 18. Chai, J. and Dibb, S. (2014), "How consumer acculturation influences interpersonal trust", Journal of Marketing Management, 30, 60-89. doi:10.1080/0267257X.2013.803140.
- 19. Chen, S.H., Tzeng, S.Y., Tham, A. & Chu, P.X. (2021). Hospitality services in the post-COVID-19 era: Are we ready for high-tech and no touch service delivery in smart hotels? *Journal of Hospitality Marketing & Management, 30(8),* 905-928. doi:10.1080/19368623.2021.1916669
- 20. Cho, H., Chi, C., & Chiu, W. (2020). Understanding sustained usage of health and fitness apps: Incorporating the technology acceptance model with the investment model. *Technology in Society, 63*, 101429. doi:10.1016/j.techsoc.2020.101429
- 21. Chuah, H-W, Aw, E.C-X. & Cheng, C-F. (2021). A silver lining in the COVID-19 cloud: examining customers' value perceptions, willingness to use and pay more for robotic restaurants. *Journal of Hospitality Marketing & Management, 31(1),* 49-76. doi:10.1080/19368623.2021.1926038
- 22. Civelek, M., Ključnikov, A., Kmeco, L. & Hamarneh, I. (2021). The Influences of the Usage of Marketing Communication Tools on Innovations of the Functional Areas of Businesses: Perspectives for the Mining Industry. *Acta Montanistica Slovaca*, 26, 685–697. doi:10.46544/ams.v26i4.08
- 23. Cohen, J. (2013). Statistical power analysis for the behavioural sciences. In Routledge eBooks. doi:10.4324/9780203771587
- 24. Dankiewicz, R., Balawejder, B., Chudy-Laskowska K., & Britchenko I. (2022). Impact factors and structural analysis of the state's financial security. *Journal of International Studies*, 15(4), 80-92. doi:10.14254/2071-8330.2022/15-4/5
- 25. Davis, F.D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology, *Management Information Systems Quarterly*, 13 (3) (1989) 19–340, doi:10.2307/249008.
- 26. Davis, F.D., Bagozzi, R.P. & Warshaw P.R. (1989). User acceptance of computer technology: a comparison of two theoretical models. *Management Science*, 35(8), 903-1028. doi:10.1287/mnsc.35.8.982
- 27. Dias, A., González-Rodriguez, M.R. & Hallak, R. (2022). Nascent entrepreneurship: A critical perspective and research agenda in tourism and hospitality. *International Journal of Contemporary Hospitality Management*, 35(7), 2527-2544. doi:10.1108/IJCHM-07-2022-0853
- 28. Draskovic, V., Pupavac, J., Delibasic, M., & Bilan, S. (2022). Trande unions and hotel industry: Current trends. Journal of International Studies, 15(1), 104-116. doi:10.14254/2071-8330.2022/15-1/7
- 29. Duy, N.B.P. & Giang, N.T.P. (2022). Contactless Payments through E-wallets on Mobile Devices in the Context of COVID-19 at VietNam. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), 0385-0392. doi:10.1109/CCWC54503.2022.9720868
- 30. El-Adly, M.I. (2019). Modelling the relationship between hotel perceived value, customer satisfaction, and customer loyalty. *Journal of Retailing and Consumer Services*, 50, 322-332. doi:10.1016/j.jretconser.2018.07.007
- 31. Esawe, A.T. (2022). Understanding mobile e-wallet consumers' intentions and user behavior. *Spanish Journal of Marketing, 26(3),* 2022. doi:10.1108/SJME-05-2022-0105





- 32. Falk, R. F., & Miller, N. B. (1992). *A primer for soft modelling*. Retrieved May 15, 2025 from https://psycnet.apa.org/record/1992-98610-000.
- 33. Farrukh, M., Shahzad, I.A., Sajod, M., Sheikh, M.F. & Alam, I. (2020). Revisiting the intention to travel framework in the perspective of medical tourism: The role of eWord-of-mouth and destination image. *International Journal of Healthcare Management*, 15(1), 28-35. doi:10.1080/20479700.2020.1836733
- 34. Farzin, M., Shababi, H., Sasi, G.S., Sadeghi, M. & Makvandi, R. (2022). The determinants of eco-fashion purchase intention and willingness to pay. *Spanish Journal of Marketing*, 27(3), 348-366. doi:10.1108/SJME-07-2022-0158
- 35. Featherman, M.S., & Pavlou, P.A. (2003). Predicting e-services adoption: a perceived risk facets perspective. *International Journal of Human-Computer Studies*, 59, 451-474. doi:10.1016/S1071-5819(03)00111-3
- 36. Ferreira, L., Oliveira, T. & Neves, C. (2023). Consumer's intention to use and recommend smart home technologies: The role of environmental awareness. *Energy*, 264(C), 125814. doi:10.1016/j.energy.2022.125814
- 37. Flavian, C., Akdim, K. & Casaló, L.V. (2022). Effects of voice assistant recommendations on consumer behavior. *Psychology & Marketing*, 40(2), 328-346. doi:10.1002/mar.21765
- 38. Fleming, A., Wise, R., Hansen, H. & Sams, L. (2017). The sustainable development goals: A case study. *Marine Policy*, 86, 94-103. doi:10.1016/j.marpol.2017.09.019
- 39. Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. *Journal of Marketing Research*, 18(3), 382–388. doi:10.1177/002224378101800313
- 40. Fu, X. (2021). A novel perspective to enhance the role of TPB in predicting green travel: the moderation of affective-cognitive congruence of attitudes. *Transportation*, 48, 3013-3035. doi:10.1007/s11116-020-10153-5
- 41. Gavurova, B., Polishchuk, V., Mikeska, M. & Polishchuk, I. (2025). Socio-economic impact of digital transformation in tourism: A hybrid decision support model. *Journal of Scientific Papers: Economics & Sociology.* 18(2), 305-319. doi:10.14254/2071-789X.2025/18-2/16
- 42. Gupta, S., Modgil, S., Lee, C-K. & Sivarajah, U. (2023). The future is yesterday: Use of AI-driven facial recognition to enhance value in the travel and tourism industry. *Information Systems Frontiers*, 25; 1179-1195. doi:10.1007/s10796-022-10271-8
- 43. Habánik, J., Grenčíková, A., Šrámka, M. & Húževka, M. (2021). Changes in the organization of work under the influence of COVID-19 pandemic and industry 4.0. *Interdisciplinary approach to economics and sociology*, 14(4), 228-241. doi:10.14254/2071-789X.2021/14-4/13
- 44. Hahm, J.B., Byon, K.K., Hyun, Y.A. & Hahm, J. (2022). The show must go on: The mediating role of self-assessment in the relationship between performers' technology acceptance and satisfaction level with remote performances in Korea during the COVID-19 pandemic. *Technology in Society, 68*, 101855. doi:10.1016/j.techsoc.2021.101855
- 45. Hair, J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM). *European Business Review*, 26(2), 106–121. doi:10.1108/ebr-10-2013-0128
- 46. Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. *The Journal of Marketing Theory and Practice*, 19(2), 139–152. doi:10.2753/mtp1069-6679190202
- 47. Han, H., Meng, B., & Kim, W. (2016). Bike-traveling as a growing phenomenon: Role of attributes, value, satisfaction, desire, and gender in developing loyalty. *Tourism Management*, 59, 91–103. doi:10.1016/j.tourman.2016.07.013
- 48. Hao, F., & Chon, K. (2021). Are you ready for a contactless future? A multi-group analysis of experience, delight, customer equity, and trust based on the Technology Readiness Index 2.0. Journal of Travel & Tourism Marketing, 38(9), 900–916. doi:10.1080/10548408.2021.1997878





- 49. Hao, F., Qiu, R.T.R., Park, J. & Chon, K. (2023). The Myth of Contactless Hospitality Service: Customers' Willingness to Pay. *Journal of Hospitality & Tourism Research, 47(8),* 1478-1502. doi:10.1177/10963480221081781
- 50. Hartono, E., Holsapple, C.W., Kim, K.-Y., Na, K.-S., & Simpson, J.T. (2014). Measuring perceived security in B2C electronic ecommerce website usage: A respectification and validation. *Decision Support Systems*, 62, 11-21. doi:10.1016/j.dss.2014.02.006
- 51. Henseler, J., Ringle, C. M., & Sarstedt, M. (2014). A new criterion for assessing discriminant validity in variance-based structural equation modeling. *Journal of the Academy of Marketing Science*, 43(1), 115–135. doi:10.1007/s11747-014-0403-8
- 52. Herzallah, D., Muñoz-Leiva, F. & Liebana-Cabanillas, F. (2022). Drivers of purchase intention in Instagram Commerce. *Spanish Journal of Marketing*, 26(2), 168-188. doi:10.1108/SJME-03-2022-0043
- 53. Khajehshahkoohi, M., Davoodi, S.R.. & Shaaban, K. (2022). Factors affecting the behavioural intention of tourists on the use of bike sharing in tourism areas. Research in Transportation Business & Management, 43, 100742. doi:10.1016/j.rtbm.2021.100742
- 54. Kim, J.J., Han, H., Ariza-Montes, A. (2021). The impact of hotel attributes, well-being perception, and attitudes on brand loyalty: examining the moderating role of COVID-19 pandemic. *Journal of Retailing and Consumer Services 62*, 102634. doi:10.1016/j.jretconser.2021.102634
- 55. Kong, X., Zhang, A., Xiao, X, Das, S. & Zhang, Y. (2022). Work from home in the post-COVID world. Case Studies on Transport Policy 10, 1118-1131. doi:10.1016/j.cstp.2022.04.002
- 56. Konuk, F.A. (2019). The influence of perceived food quality, price fairness, perceived value and satisfaction on customers' revisit and word-of-mouth intentions towards organic food restaurants. *Journal of Retailing and Consumer Services*, 50(4), 103-110. doi:10. 1016/j.jretconser.2019.05.005
- 57. Korstanje, M. E. (2020). Tourism Security: a critical insight. In *Emerald Publishing Limited eBooks* (pp. 1–20). doi:10.1108/978-1-83867-905-720201002
- 58. Lai, W-T. & Chen, C-F. (2011). Behavioral intentions of public transit passengers The roles of service quality, perceived value, satisfaction and involvement. *Transport Policy*, 18, 318-325. doi:10.1016/j.tranpol.2010.09.003
- 59. Larsen, S., Brun, W., & Øgaard, T. (2008). What tourists worry about Construction of a scale measuring tourist worries. *Tourism Management*, 30(2), 260–265. doi:10.1016/j.tourman.2008.06.004
- 60. Law, R. (2006). The perceived impact of risks on travel decisions. *International Journal of Tourism Research*, 8(4), 289–300. doi:10.1002/ (ISSN)1522-1970.
- 61. Li, M. & Huang, S. (2022). Contactless but loyal customers: The roles of anxiety and sociability in the hotel service context. *Journal of Retailing and Consumer Services*, 66, 102910. doi:10.1016/j.jretconser.2022.102910
- 62. Li, M., Yin, D., Qiu, H. & Bai, B. (2021). Examining the effects of AI contactless services on customer psychological safety, perceived value, and hospitality service quality during the COVID-19 pandemic. *Journal of Hospitality Marketing & Management, 31(1),* 24-48. doi:10.1080/19368623.2021.1934932
- 63. Li, S. & Kallas, Z. (2021). Meta-analysis of consumers' willingness to pay for sustainable food products. *Appetite*, 163, 105239. doi:10.1016/j.appet.2021.105239
- 64. Liu, C., & Yang, J. (2021). How hotels adjust technology-based strategy to respond to COVID-19 and gain competitive productivity (CP): strategic management process and dynamic capabilities. *International Journal of Contemporary Hospitality Management*, 33, 2907-2931. doi:10.1108/IJCHM-10-2020-1143





- 65. Loh, X-M., Lee, V-H., Tan, G.W-H., Hew, J-J. & Ooi, K-B. (2019). Towards a Cashless Society: The Imminent Role of Wearable Technology. *Journal of Computer Information Systems*, 62(1), 39-49. doi:10.1080/08874417.2019.1688733
- 66. Lupton, K. & Samy, C. (2022). Restoring the balance between humanity and nature through tourism entrepreneurship: A conceptual framework. *Journal of Tourism Futures*, 8(3), 367-374. doi:10.1108/JTF-01-2022-0035
- 67. Ma, C., Fan, A. & Mattila, A. (2024). Decoding the shared pathways of consumer technology experience in hospitality and tourism: A meta-analysis. *International Journal of Hospitality Management*, 118, 103685. doi:10.1016/j.ijhm.2023.103685
- 68. Ma, D., Dong, J. & Lee, C.C. (2025) Influence of perceived risks on consumers' intention and behaviour in cross-border e-commerce transactions: A case study of the Tmall Global platform. *International Journal of Information Management*, 81, 102854. doi:10.1016/j.ijinfomgt.2024.102854
- 69. Makki, A.M., Ozturk, A.B. & Singh, D. (2016). Role of risk, self-efficacy, and innovativeness on behavioural intentions for mobile payment systems in the restaurant industry. *Journal of Foodservice Business Research*, 19(5), 454-473. doi:10.1080/15378020.2016.1188646
- 70. Manimuthu, A., Dharshini, V., Zografopoulos, I., Priyan, M.K. & Konstatinou, C. (2021). Contactless Technologies for Smart Cities: Big Data, IoT, and Cloud Infrastructures. SN *Computer Science*, (2), 334. doi:10.1007/s42979-021-00719-0
- 71. Medeiros, M., Ozturk, A., Hancer, M. Weinland, J. & Okumus, B. (2022). Understanding travel tracking mobile application usage: An integration of self-determination theory and UTAUT2. *Tourism Management Perspectives, 42,* 100949. doi:10.1016/j.tmp.2022.100949
- 72. Nazir, M.U., Yasin, I. & Tat, H.H. (2021). Destination image's mediating role between perceived risks, perceived constraints, and behavioural intention. *Heliyon*, 7(7), e07613. doi:10.1016/j.heliyon.2021.e07613
- 73. Neuburger, L. & Egger, R. (2021). Travel risk perception and travel behaviour during the COVID-19 pandemic 2020: a case study of the DACH region. *Current Issues in Tourism*, 24, 1003-1016. doi:10.1080/13683500.2020.1803807
- 74. Paulose, D. & Shakeel, A. (2021). Perceived Experience, Perceived Value and Customer Satisfaction as Antecedents to Loyalty among Hotel Guests. *Journal of Quality Assurance in Hospitality & Tourism*, 23(2), 447-481. doi:10.1080/1528008X.2021.1884930
- 75. Podsakoff, P. M., MacKenzie, S. B., Lee, J., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. *Journal of Applied Psychology*, 88(5), 879–903. doi:10.1037/0021-9010.88.5.879
- 76. Ruiz-Mafe, C., Bigné-Alcañiz, E. & Currás-Pérez, R. (2020). The effect of emotions, eWOM quality and online review sequence on consumer intention to follow advice obtained from digital services. *Journal of Service Management*, 31(3), 465-487. doi:10.1108/JOSM-11-2018-0349
- 77. Sánchez-Cañizares, S. M., Cabeza-Ramírez, L. J., Muñoz-Fernández, G., & Fuentes-García, F. J. (2020). Impact of the perceived risk from Covid-19 on intention to travel. *Current Issues in Tourism*, 24(7), 970–984. doi:10.1080/13683500.2020.1829571
- 78. Saoula, O., Shamim, A., Suki, N.M., Ahmad, M.A., Abid, M.F., Patwary, A.K. & Abbasi, A.Z. (2023). Building e-trust and retention in online shopping: the role of website design, reliability and perceived ease of use. *Spanish Journal of Marketing*, 27(2), 178-201. doi:10.1108/SJME-07-2022-0159
- 79. Sharma, G.D., Taheri, B., Cichon, D., Parihar, J.S. & Kharbanda, A. (2024). Using innovation and entrepreneurship for creating edge in service firms: A review research of tourism and hospitality industry. *Journal of Knowledge and Innovation*, 9(4), 100572. doi:10.1016/j.jik.2024.100572
- 80. Sharma, S., Singh, G. & Pratt, S. (2021). Modeling the multi-dimensional facets of perceived risk in purchasing travel online: A generational analysis. *Journal of Quality Assurance in Hospitality & Tourism*, 23(2), 539-567. doi:10.1080/1528008X.2021.1891597





- 81. Shin, H.H., Jeong, M. & Cho, M-H. (2021). The impact of smart tourism technology and domestic travelers' technology readiness on their satisfaction and behavioral intentions: A cross-country comparison. *International Journal of Tourism Research*, 23, 726-742. doi:10.1002/jtr.2437
- 82. Shin, H. & Kang, J. (2020). Reducing perceived health risk to attract hotel customers in the COVID-19 pandemic era: Focused on technology innovation for social distancing and cleanliness. *International Journal of Hospitality Management*, 91, 102664. doi:10.1016/j.ijhm.2020.102664
- 83. Song, M., Xing, X., Duan, Y., Cohen, J. & Mou, J. (2022). Will artificial intelligence replace human customer service? The impact of communication quality and privacy risks on adoption intention. *Journal of Retailing and Consumer Services, 66,* 102900. doi:10.1016/j.jretconser.2021.102900
- 84. Spiegel, D., & Bodas, M. (2025). The association between type of exposure to the threat of terrorism and resilience in communal villages in Israel: A cross-sectional study. *International Journal of Intercultural Relations*, 108, 102246. doi:10.1016/j.ijintrel.2025.102246
- 85. Sukendro, S., Habibi, A., Khaeruddin, K., Indrayana, B., Syahruddin, S., Makadada, F. A., & Hakim, H. (2020). Using an extended Technology Acceptance Model to understand students' use of e-learning during Covid-19: Indonesian sport science education context. *Heliyon*, *6*(11), e05410. doi:10.1016/j.heliyon.2020.e05410
- 86. Tan, Y., Ying, X., Gao, W., Wang, S. & Liu, Z. (2023). Applying an extended theory of planned behaviour to predict willingness to pay for green and low-carbon energy transition. *Journal of Cleaner Production*, 387, 135893. doi:10.1016/j.jclepro.2023.135893
- 87. Tavitiyaman, P., Qu, H., Tsang, W-S. L. & Lam, C-W. R. (2021). The influence of smart tourism applications on perceived destination image and behavioral intention: The moderating role of information search behavior. *Journal of Hospitality and Tourism Management*, 46, 476-487. doi:10.1016/j.jhtm.2021.02.003
- 88. Teng, Y.-M., & Wu, K.-S. (2025). The future of hotel check-ins: Evaluating generation Z's acceptance of facial recognition technology using AIDUA-PMT model approach. *Oeconomia Copernicana*, 2025(16), 39-78. doi:10.24136/oc.3235
- 89. Teo, T. S. H., Srivastava, S. C., & Jiang, L. (2008). Trust and Electronic Government Success: An Empirical Study. *Journal of Management Information Systems*, 25(3), 99–132. doi:10.2753/mis0742-1222250303
- 90. Truong, Y. (2013). A cross-country study of consumer innovativeness and technological service innovation. *Journal of Retailing and Consumer Services*, 20(1), 130-137. doi:10.1016/j.jretconser.2012.10.014
- 91. Um, J. & Yoon, S. (2020). Evaluating the relationship between perceived value regarding tourism gentrification experience, attitude, and responsible tourism intention. *Journal of Tourism and Cultural Change*, 19(3), 345-361. doi:10.1080/14766825.2019.1707217
- 92. UNWTO (2024). TOURISM NEWS International Tourism to Reach Pre-Pandemic. https://www.unwto.org/news/international-tourism-to-reach-pre-pandemic-levels-in-2024
- 93. Wang, G., Dou, W. & Zhou, N. (2008). Consumption attitudes and adoption of new consumer products: a contingency approach. *European Journal of Marketing*, 42(1/2), 238-254. doi:10.1108/03090560810840998
- 94. Wang, Y., Choudhury, C., Hancock, T., Wang, Y. & de Dios Ortúzar, J. (2024). Influence of perceived risk on travel mode choice during COVID-19. *Transport Policy*, 148, 181-191. doi:10.1016/j.tranpol.2024.01.009
- 95. Wu, N. & Liu, Z. (2021). Higher education development, technological innovation and industrial structure upgrade. *Technological Forecasting & Social Change*, 162, 120400. doi:10.1016/j.techfore.2020.120400



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



- 96. Yepez, C. & Leimgruber, W. (2024). The evolving landscape of tourism, travel, and global trade since the COVID-19 pandemic. Research in Globalization, 8, 100207. doi:10.1016/j.resglo.2024.100207
- 97. Yi, J., Yuan, G. & Yoo, C. (2019). The effect of the perceived risk on the adoption of the sharing economy in the tourism industry: The case of Airbnb. *Information Processing & Management*, 57(1), 102108. doi:10.1016/j.ipm.2019.102108
- 98. Yu, J., Lee, K. & Hyun, S.S. (2021). Understanding the influence of the perceived risk of the coronavirus disease (COVID-19) on the post-traumatic stress disorder and retravel intention of hotel guests. *Journal of Hospitality and Tourism Management*, 46, 327-335. doi:10.1016/j.jhtm.2021.01.010

### Brief description of Author/Authors:

### Mary Grace Burkett, PhD Candidate

ORCID ID: <a href="https://orcid.org/0009-0006-1503-6606">https://orcid.org/0009-0006-1503-6606</a>

Affiliation: Marketing Department, Faculty of Commerce and Tourism, Complutense University of Madrid, Av. de Filipinas, 3, Chamberí, 28003 Madrid, <a href="https://www.ucm.es">www.ucm.es</a>.

Email: mburkett@ucm.es

PhD candidate and experienced Marketing Consultant with a solid background in management consulting. Holds two Master's degrees in Innovation and Tourism Marketing and in EU Studies and Human Rights from UCAM, Spain. Her research focuses on immersive technologies and innovation. Awarded Best Paper (Senior Category) at AIRSI2025 for work on immersive technologies in marketing and tourism.

### Nuria Recuero-Virto, Associate Professor

ORCID ID: <a href="https://orcid.org/0000-0002-5346-9502">https://orcid.org/0000-0002-5346-9502</a>

Affiliation: Marketing Department, Faculty of Commerce and Tourism, Complutense University of Madrid, Av. de Filipinas, 3, Chamberí, 28003 Madrid, <a href="https://www.ucm.es">www.ucm.es</a>.

Email: <u>nrecuero@ucm.es</u>

Associate Professor at Universidad Complutense de Madrid. She was awarded a Postdoctoral Scholarship (2014-2018) and a Predoctoral Scholarship (2010-2014). Given this background, her specific areas of interest are cultural tourism marketing, edtech, and neuromarketing. She has received multiple academic awards of excellence, including AIRSI2025 for Best Paper, Senior Category, in Immersive Technologies, AIRSI2021 for Best Extended Abstract, the ESIC AEDEM award for Best Marketing Research in 2017, and being a finalist for the Award Tribuna FITUR Jorge Vila Fradera for the best doctoral thesis.