

Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



# The Impact of Smart Technologies on Innovative Tourist Memorable Experience and Revisit Intention: The Mediation of Technology-Task Fit

# Nagwa Zouair

Department of History, College of Arts, Humanities and Social Sciences, University of Khorfakkan, Sharjah, UAE; and Tourism Guidance Department, Faculty of Tourism and Hotels, Fayoum University, Egypt

#### Mohamed Abou-Shouk

College of Arts, Humanities and Social Sciences, University of Al Dhaid, Sharjah, UAE; and Faculty of Tourism and Hotels, Fayoum University, Fayoum, Egypt

#### **Mesut Idriz**

College of Arts, Humanities and Social Sciences, University of Sharjah, Sharjah, UAE

#### Issam Okleh

Department of History, College of Arts, Humanities and Social Sciences, University of Khorfakkan, Sharjah, UAE; and Department of History, College of Arts, University of Jordan, Jordan

Received: 4 February 2025. Revision received: 8 July 2025. Accepted: 25 July 2025

#### **Abstract**

This study examines the impact of smart tourism technologies on creating memorable experiences for tourists and increasing their intentions to revisit. Employing a quantitative approach, the research tested and validated an extended technology-to-performance chain model. A survey is conducted to collect responses from 272 tourists who recently visited the UAE and 254 tourists who recently visited Egypt. Structural equation modelling is utilised for data analysis. The findings indicate that technology-task fit significantly predicts tourists' use of smart technologies. Tourists leverage these smart technologies to cultivate memorable experiences, which, in turn, foster their intention to revisit. This study emphasizes the role of smart technology in forming tourists' memorable experiences and their likelihood of revisiting. It provides valuable insights for destination marketers, planners, smart technology developers, and service providers to focus on the key factors that contribute to enhancing tourists' memorable experiences and their intent to revisit.

Key Words: smart technology, memorable experience, technology-task fit, revisit intentions

**JEL Classification:** L83

**Reference**: Zouair, N., Abou-Shouk, M., Idriz, M., & Okleh, I. (2025). The Impact of Smart Technologies on Innovative Tourist Memorable Experience and Revisit Intention: The Mediation of Technology-Task Fit. *Journal of Tourism and Services*, 16(31), 27-45. https://doi.org/10.29036/tkk4ah55

## 1. Introduction

Using smart technologies in tourism significantly contributes to creating memorable tourist experiences and increases their revisit intention (Domi et al., 2019; Kim et al., 2010; Shin, Kim, & Jeong, 2023). Pai, Kang, Liu, and Zheng (2021), Torabi et al. (2022), and Bacik et al. (2025) found that smart technology adoption enhances marketing efforts, tourists' memorable experiences, satisfaction, and revisit intention. Numerous studies have examined the influence of smart technology (ST) on memorable experiences and behavioural intentions across various countries. Shin et al. (2023) investigated the effects of smart technology on memorable tourism and revisit intentions in four smart cities in the United States. Their findings indicated that the use of smart technology significantly enhances memorable tourism



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



experiences, which in turn affects behavioral intentions. Similarly, on another continent, research conducted by Pérez et al. (2025) in Peru yielded consistent results, demonstrating that smart technology has a positive impact on memorable tourism, which in turn influences tourists' attachment to the destination and their intention to revisit. In Asia, Tulung et al. (2025) conducted a study in Indonesia to explore the effects of smart technology on destination image, memorable tourism experiences, and loyalty. They discovered a positive relationship between smart technology usage and memorable tourism experiences, as well as destination image, both of which subsequently influence tourist loyalty.

Other Smart technology in tourism encompasses various online applications, information sources, and platforms, online travel agents, personal blogs, public and company websites, social media, and smartphone apps (Huang et al., 2017). These technologies have gradually increased and become a field study of research to investigate their impact on tourists' emotional and cognitive behaviour (Azis et al., 2020; Shin et al., 2023; Tavitiyaman et al., 2021). On the other hand, the smart tourism technology can significantly impact tourist memories of the visit (Wang et al., 2020). Kim et al. (2010) defined memorable experience as the positive tourist memories that occurred after the visit, and Coudounaris and Sthapit (2017) found that tourists with memorable experiences tend to revisit the destination (Tsai, 2016; Vada et al., 2019).

According to No and Kim (2015), four important attributes can enhance the usefulness and effectiveness of smart technologies: informativeness, accessibility, interactivity, personalization, and security. Furthermore, Goodhue and Thompson (1995) linked the task-technology fit with individual's characteristics, and Rogers (2003) classified technology adopters into five categories, and each category has its distinct traits for using technology. Innovators are risk-takers and willing to use new technologies and experience new ideas. Early adopters are at the head of the adopters' curve of technology. Early majority adopters care about the practical benefits of adoption. The late majority segment is more cautious when making decisions to adopt new technologies. Laggards are slower adopters and sometimes use technologies only when they are forced to do so. Abou-Shouk et al., (2021b), have found that the technology adopter traits are linked with new technologies' ease of use and hence increase tourists' willingness to adopt new systems and technologies, Moravec and Valenta (2015).

Considering the extant research investigating the adoption smart technologies, Y. Zhang, Sotiriadis, and Shen (2022) mentioned that few studies have examined the relationships between smart technologies' adoption and facets of tourist experience and revisit behaviour. The current study, therefore, integrates significant factors that collectively contribute to smart technology adoption by tourists, helping to improve their memorable visit experience and revisit intention. Furthermore, the present study focuses on the demand side of smart technology adoption rather than the supply side by collecting responses from tourists who visited the UAE and Egypt.

This emphasis on technology-driven behavioral adaptation aligns with broader socio-economic perspectives indicating that competitiveness increasingly depends on continuous innovation and adaptive capacity (Vlach, 2022; Vlach et al., 2025).

In addition, this research extends the technology-to-performance chain model (TPC) and examines its antecedents and consequences. This study aims to measure the effect of: 1) smart technology and tourists' characteristics on task-technology fit, 2) task-technology fit on smart technology adoption/ use, 3) smart technology adoption/ use on tourists' memorable experience and revisit intention, and 4) tourist's memorable experience on their revisit intention (Figure 1). Theoretically, the present study develops an integrative model that includes smart tourism technology adoption antecedents (i.e., technology and tourists' characteristics, and task-technology fit) and consequences (i.e., memorable experience and revisit intention) (Figure 1). Theoretically, this study extends the TPC model and validates it on tourists visiting the UAE and Egypt. Practically, the current study helps destination marketers, tourism service providers, and travel planners to understand the effect of smart technology usage on tourists' experience and their revisit intention. In addition, it provides an understanding of the



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



characteristics of smart technology and technological characteristics/ traits of tourists and how this affects tourists' intention to use smart technologies and achieve memorable experiences during their visits.

# 2. Literature review

#### 2.1 TPC Model

TPC developed by Goodhue and Thompson (1995) proposes the concept of task-technology fit (TTF) as a predictor of both technology use and performance. TPC integrates both technology use and fit approaches (Abdillah & Saepullah, 2018). According to TPC, TTF refers to the features of technology that fit the relevant task, as technology is seen as a tool to achieve certain tasks (Goodhue & Thompson, 1995). TPC introduces three predictors of technology-task fit: task, technology, and an individual's characteristics, and assumes that the higher fit between these three predictors will lead to better performance (Andersone et al, 2021). According to Howard and Hair (2023)the literature, task efficacy differs based on the context; this study is limited to both technology and individual characteristics as two predictors of TTF. Technology characteristics refer to the attributes of technology that improve its functionality and effectiveness (No & Kim, 2015). These attributes include technology informativeness (i.e., the information quality and trust), accessibility (i.e., the degree of ease of access information, and the various devices to access information through), interactivity (i.e., immediate actions and real-time feedback and active communication), personalisation (i.e., the ability to obtain information that suits the tourist' needs), and security (i.e., privacy concerns) (Lin et al., 2020; No & Kim, 2015; Pai et al., 2021; Saura et al., 2022; Y. Zhang et al., 2022).

Recent research by Koh et al., (2023) confirmed the effect of technology characteristics on technology-task fit. In the tourism research context, it is found that technology characteristics contribute to the smart technology value in the tourist experience (Jeong & Shin, 2020; Y. Zhang et al., 2022), and technology-task fit of trips online booking (Nugroho et al., 2018). Thus, the first hypothesis is developed:

H1. Smart tourism technology characteristics predict technology-task fit.

Moreover, Goodhue and Thompson (1995) linked individual's characteristics as a predictor of TTF. This implies that TTF happens when individual users have the relevant characteristics to use relevant technologies. Based on Rogers (2003)'s classification of technology adopters, there are five categories: innovators (willing to experience new ideas and technologies), early adopters (come next to innovators in the adoption curve), early majority (focus on technology practical benefits), late majority (cautious decision-makers of new technology adoption), and laggards (slower/ forced adopters of technology).

In the tourism context, Hashim et al., (2014) revealed that the early adopter hotels of technology are advanced in their implementation of technologies compared to other categories of adopter hotels. Dhaigude et al., (2016) found that the user experience with technology and the rate of use is positively influencing the usefulness and outcome of technology adoption. They classified technology users into eight categories starting with Tech-Savvy and ending with laggards. Each category of adopters affects the familiarity of technology adopted and its outcome. Abou-Shouk et al. (2021a) found that the technology adopter category affects the ease of using robots in tourism and hospitality and enhances the attitude toward its usage in tourism and hospitality tasks. This study categorises tourists based on their technological characteristics into three categories: innovators, early adopters, and early majority. It is supposed that expert tourists in technology use, will easily explore the functionality of relevant smart tourism technology and achieve the best fit between technology and related tasks. Thus, the second hypothesis is formulated.

H2. Tourist technological characteristics have a positive effect on TTF.



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



The third construct in the TPC model is the technology-task fit. TTF implies the technological tools that fit the tasks and have functional attributes that contribute to achieving the relevant tasks. Goodhue and Thompson (1995) divided these attributes into eight groups. Data quality is the first group, it describes the role of smart technologies in revealing correct data/ information, that is up-to-date, sufficient, and detailed to help make relevant decisions. Data locability is the second group. It refers to the ability of smart technologies to locate the required and exact data requested. The capability of smart technologies to have access and authorization to requested data is another group. The fourth is the ability to access data from various inputs and through various devices (i.e., tablets, smartphones, etc.). Ease of use is another concern when using technology to access and find relevant data. The sixth group is timeliness. This implies the capability of smart technologies to produce the required information in time. The further concern is the availability of smart technologies when tourists need it and how reliable to count on the produced information to make the relevant decisions. The eighth group is the relationships of users (i.e., tourists) with smart technology' support staff. This encompasses their skills and their prompt responses. TTF has been studied in various disciplines, including its effect on performance in health (El-Gayar et al., 2010), technology adoption (Koh et al., 2023), e-learning (Alyoussef, 2023), social media marketing in tourism (Lin et al., 2020), and trip purchasing intentions (Nugroho et al., 2018).

Goodhue and Thompson (1995) revealed that TTF is predicting and leading to technology utilisation/ use. When users (i.e., tourists) perceive smart technology as fit for the task they want to achieve, then they will utilise it regularly and frequently. Alturki and Aldraiweesh (2022) found that TTF contributes to the ease and usefulness of Google Meet adoption during COVID-19. Similarly, Koh et al. (2023) found that TTF is substantially affecting innovative technologies in commercial settings. Lin et al. (2020) found that TTF positively affects social media use for tourism and hospitality marketing, and Nugroho et al. (2018) pointed out that TTF predicted the usage of online booking of trip packages. Hence, we hypothesised that when tourists perceive smart technology as fit for their task, they will use it frequently.

H3. Technology-task fit determines the usage of smart technologies by tourists.

# 2.2 Smart technology use, memorable experience, and revisit intention

Goodhue and Thompson (1995) linked the technology use and technology-task fit to performance. They concluded that the use of technologies with attributes that fit the tasks leads to efficient user performance. Andersone et al. (2021) referred to performance impact as the task's effective accomplishment because of technology fit with the task. This may include better performance of jobs, easiness of achieving tasks, and effectiveness and productivity increase (El-Gayar et al., 2010). According to previous research, performance is referred to as the target outcome of using smart technologies. Jeong and Shin (2020) measured the performance of ST on tourist experience and revisitation intent. Nugroho et al. (2018) measured the performance of TTF in terms of increasing trip booking. Lin et al. (2020) divided the impact of social media on marketing performance into two categories. The first includes individual performance and it includes tourists' attitude toward the destination and travel decisionmaking, visibility and trust. The second is organisational performance which includes destination image and competitiveness, customer satisfaction and loyalty, and value creation. Pai et al. (2021) defined the target performance of using smart technologies as the tourist experience, satisfaction, happiness, and revisit intention. In this study, the operational definition of performance is the effect of smart technologies use on forming visitors' memorable experiences and revisit intention increases. The key goal of any tourism destination is to deliver a memorable experience (Pizam, 2010) that contributes to developing a competitive advantage (Ayazlar & Ayazlar, 2017; J.-H. Kim & Ritchie, 2014). A memorable tourism experience is a past personal travel-related event that has made a lasting impression in one's longterm memory (Larsen, 2007). It is a positive facet and essence that is selectively formed from the tourism



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



experience remembered after it because of its distinctiveness and evocativeness Kim & So, 2022; Kim, 2018; Kim et al, 2012). Since the memorable experience is a subjective evaluation, the extent to which someone remembers their tourism experiences can differ based on their past experiences and personal standards, even when receiving the same services (Ayazlar & Ayazlar, 2017; Hosany et al., 2022).

It is difficult to decouple technology from tourism experiences. Tourists use their smartphones and devices before and during their trips, making it challenging to separate the two concepts. As a result, tourism destinations strive to offer advanced technology that can assist tourists in interacting with their surroundings, finding information, navigating, and understanding cultural attractions. This is done to increase their competitiveness and provide a better experience for visitors (Lee, Lee, Chung, & Koo, 2018; Liberato, Alen, & Liberato, 2018). Extant studies have shown that using smart technology in tourism destinations affects tourists' experience and increases the visitation intention. H. Kim, Koo, and Chung (2021) have demonstrated that utilising mobility apps enhances the tourist experience by reducing the stress associated with travelling. Likewise, engaging in social activities on social networking sites indirectly impacts tourists' experiences positively (Kim & Tussyadiah, 2013). Additionally, based on a study conducted by Azis et al. (2020), tourists who utilised ST reported that they had a more enjoyable and memorable tourism experience. These apps were preferred due to their interactive, personalised, and informative features, rather than just being easily accessible (Jeong & Shin, 2020) which has a positive effect on memorable tourism (Chen et al., 2020). Additionally, Torabi et al. (2022) emphasised that utilising smart tourism technologies, whether for exploration or exploitation, has a positive impact on creating memorable tourism experiences and increasing behavioural intention. Smart tourism technologies directly advance creating memorable tourism experience (Elshaer & Marzouk, 2022). Thus, the fourth hypothesis is:

H4. Smart technology use contributes to forming tourists' memorable experiences of destinations.

As for revisit intention, literature studies examined the effect of using ST on revisition intent. Perez-Aranda, González Robles, and Alarcón Urbistondo (2023) found that the intensive usage of sports apps increases the revisit intention of users to sports activities. Y. Zhang et al. (2022) highlighted the effect of smart technology value on tourist satisfaction and revisit intention, and Zheng et al. (2022) found that using smart technologies increases the revisit intention to tourist destinations and improves their satisfaction level. Punpairoj, Namahoot, Wattana, and Rattanawiboonsom (2023) found that using smart technologies (i.e., augmented reality) helped explore tourist destinations and motivate travellers' revisit intention to Thailand, meanwhile, Kusumah et al., (2022) found that virtual reality improves destination image and enhances revisit intention of Indonesian tourists. Furthermore, Suksutdhi (2022) revealed that using self-service technologies increases the revisit intention of guests in small hotels, and Pai et al. (2021) revealed an effect of ST on revisit intention. Thus, the fifth hypothesis is developed.

H5. Smart technology use increases tourist revisit intention.

# 2.3 Visitor memorable experience and revisit intention

Previous research have investigated what kind of experience could be described as memorable. A scale with seven dimensions to measure memorable experience was created by Kim et al. (2012) including hedonism, novelty, refreshment, meaningfulness, local culture, knowledge, and involvement. This scale has been confirmed by various studies in tourism destinations (Ayazlar & Ayazlar, 2017; Bigne et al., 2020; H. Chen & Rahman, 2018; Coudounaris & Sthapit, 2017; Zhang et al., 2018). Hedonism refers to the pleasurable sensations that stimulate oneself, and it represents the emotional worth of customer consumption of any service/ product (Kim & Ritchie, 2014; Kim et al., 2012; Sthapit & Coudounaris, 2018). The pleasurable experiences are a crucial factor in an individual's evaluation of a destination and their behavioural intention (Coudounaris & Sthapit, 2017). Novelty denotes something new or unique (Bigne et al., 2020). It expresses the willingness to take physical, psychological, and social



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



risks to explore unknown places and try something exciting and adventurous (Coudounaris & Sthapit, 2017).

People seek refreshment to break free from their daily routine and find a sense of liberation (Bigne et al., 2020). Refreshment is all about the state of mind and how deeply one engages with one's experiences. Travellers view refreshment as a valuable psychological benefit and a crucial aspect of a positive tourist experience. It helps individuals maintain a stable mood by accumulating enjoyable experiences and relieving psychological stressors they encounter. Meaningfulness pertains to the sense of accomplishing something valuable and gaining self-knowledge, which could lead to personal development and changes in one's lifestyle (Kim et al., 2012). When tourists experience an increased sense of meaningfulness, their overall experience becomes more memorable (Coudounaris & Sthapit, 2017). Involvement refers to the extent of interest that tourists show towards an activity and the emotions it triggers within them. According to Kim et al. (2010), high involvement with travel experiences increases the ability to remember and recall past experiences. Acquiring new knowledge and exploring new cultures is an important part of the tourism experience. This is known as the cognitive aspect of tourism (Bigne et al., 2020). When tourists engage with local culture, it creates a unique and memorable holiday experience (Coudounaris & Sthapit, 2017).

A memorable visitor experience significantly impacts tourists' behavioural intentions (Kim, 2018), and contributes to destination attachment (Cifci, 2021), and recommendation (Chen & Rahman, 2018; Kim, 2018; Kim & Ritchie, 2014). When it comes to deciding whether to revisit a destination or not, the visitor's memories of their previous travel experience play a crucial role (Hosseini et al., 2023). Literature research has unequivocally confirmed the correlation between visitors' memorable experiences and the intention to revisit. Barnes et al., (2016) found that a long-term remembered experience leads to revisiting intention, while Chen and Rahman (2018) found that cultural contact promotes memorable experiences and fosters revisit intention. Both Kim et al. (2012) and Coudounaris and Sthapit (2017) researched the dimensions of memorable experience on revisit intention and found that hedonism, involvement, and knowledge significantly impact revisit intention. Thus, the sixth hypothesis is:

H6. A memorable visitor experience enhances tourist revisit intention.

# 2.4 Research Framework

Smart Smart Technology Visitor memorable Technology- Task Characteristics experience (hedonic, Fit (data quality, novelty, refreshment, H4 H<sub>1</sub> locability, Smart meaningfulness, H3 authorisation, Technology involvement, knowledge, compatibility, Use and local culture) Tourist-Technological easiness, Traits (innovators, H6 timeliness, and H5 early and majority H2 user relationships) Revisit Intention adopters)

Figure 1. **Proposed research framework** 

Source: developed by authors

Despite the impact of smart technology adoption on tourists' experience and revisit intention (i.e., Chang et al., 2022; Foroudi et al., 2018; Kim et al., 2021; Nugroho et al., 2018), tourists' adoption of these technologies is influenced by the technology-task fit, tourist technological abilities, and technology characteristics. These relationships can be conceptualised by the TPC (Goodhue & Thompson, 1995).



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



TPC has been used in various disciplines, including tourism (i.e., Kim et al., 2015; Lin et al., 2020; Nugroho et al., 2018).

As the TPC has been criticized due to over emphasis on task technology fit as the main factor leads to performance, the current study adapts and extends TPC to measure the relationships between six constructs (Figure 1) of which some are antecedents of technology adoption (i.e., technology characteristics, and tourist technological traits) while others are consequences of adoption (i.e., memorable experience and revisit intention). The extended TPC model measures the causal relationship between technology characteristics adopted by Huang et al. (2017), tourist technological traits (Rogers, 2003), and smart technology-task fit (H1 and H2, respectively). The study tests the effect of smart technologies-task fit on tourist's usage of such technologies (H3), and how this usage influences performance (H4-H6). The present study divided the construct of performance into two main subsets: visitor memorable experience and revisit intention. Therefore, the suggested research model tests six hypotheses (Figure 1).

# 3. Methods

The present study uses the quantitative method to compare the perceptions of a convenience sample of tourists visiting the United Arab Emirates and Egypt on the smart technologies used within tourism facilities and attractions, and how this use would affect their memorable experience and motivate their revisit intention. The UAE and Egypt are selected because these two settings are ranked among the top recipients of leisure tourists in the Arab world. In addition, the UAE is ranked as a top performer and top scorer in ICT readiness in the Arab world, while Egypt is ranked as the top performer and top ICT readiness in the Northern Africa region (World Economic Forum, 2024).

It uses an e-survey to collect data from tourists visiting the two countries to measure six main constructs. The first construct is smart technology characteristics and is measured by five items adapted from extant research (i.e., Jeong & Shin, 2020; Koh et al., 2023; Lin et al., 2020; Pai et al., 2021; Zhang et al., 2022). The second construct is three tourist technological traits and is adapted from Rogers' categories of technology adopters (Abou-Shouk et al., 2021; Rogers, 2003). Technology-task fit (20 indicators), and technology usage (3 indicators) are based on extant studies (i.e., El-Gayar et al., 2010; Goodhue & Thompson, 1995; Howard & Hair, 2023; Huang et al., 2017). Technology-task fit is measured through eight subsets: data quality (3 items), locability (3), authorisation (2), compatibility (2), ease-of-use (3), timeliness (2), reliability (2), and relationship with users (3 items). Memorable tourist experience (17 indicators) and revisit intention (3 indicators) are adapted from extant studies (i.e., Ayazlar & Ayazlar, 2023; Bigne et al., 2020; Chen & Rahman, 2018; Coudounaris & Sthapit, 2017; Huang et al., 2017; Kim & Ritchie, 2014). Memorable experience is measured through seven subsets: hedonic (3 items), novelty (3), refreshment (2), meaningless (2), involvement (3), knowledge (2), and local culture awareness (2 items) (i.e., Ayazlar & Ayazlar, 2023; Bigne et al., 2020; Chen & Rahman, 2018; Coudounaris & Sthapit, 2017; Kim & Ritchie, 2014; Zhang et al., 2018). Structural equation modelling is common in tourism research (i.e., Abou-Shouk et al., 2025a; Abou-Shouk, Elbaz, & Maher, 2021; Abou-Shouk et al., 2025b; Abou-Shouk & Eraqi, 2015; Abou-Shouk et al., 2022a; Abou-Shouk et al., 2022b; Abou-Shouk et al., 2018; Aburumman et al., 2023; Salah & Abou-Shouk, 2019). WarpPLS software is used for analysis, 272 and 254 responses were collected from tourists who visited the UAE and Egypt, respectively, during May-July 2024. Tourists were conveniently approached in hotels and tourist sites. The multi-group analysis will be used to compare the perceptions of UAE and Egyptian tourists included in the study's sampling.

# 4. Results



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



# 4.1 Sample Profile

Table 1 depicts that the majority of respondents in the UAE sample are Asian (30.4%), Europeans (22.3%), and Americans (19.1%), while Europeans constitute 46.1% of the Egyptian sample, followed by Asians (19%), and Americans (14.2%). The male respondents are dominant in both samples (UAE: 51.2%, and 54.4% for Egypt). While most UAE respondents are aged between 26 and 35 years old (35.3%), 29.6% of Egypt's sample are aged between 36 and 45 years. The majority of respondents have a university education (73% for the UAE, and 51.5% for Egypt).

Table 1. **Demographic statistics** 

| Co          | untry              | UAE (%) | Egypt (%) |  |
|-------------|--------------------|---------|-----------|--|
| Nationality | Nationality Asians |         | 19.0      |  |
|             | Europeans          | 22.3    | 46.1      |  |
|             | Americans          | 19.1    | 14.2      |  |
|             | African            | 17.0    | 11.5      |  |
|             | Others             | 11.2    | 9.2       |  |
| Gender      | Male               | 51.2    | 54.4      |  |
|             | Female             | 48.8    | 45.6      |  |
| Age         | Age 18-25          |         | 11.8      |  |
|             | 26-35              | 35.3    | 19.5      |  |
|             | 36-45              | 23.5    | 29.6      |  |
|             | 46-55              | 10.2    | 26.6      |  |
|             | More than 55       | 4.1     | 12.4      |  |
| Education   | High school        | 24.7    | 30.2      |  |
|             | University         | 73.0    | 51.5      |  |
|             | Postgraduates      |         | 18.3      |  |

Source: developed by authors

Table 2 depicts the technologies used by tourists during their visits. For the UAE, booking technologies are used by 85.2% of respondents versus 96.4% for Egypt, airport technologies (73.5% 75.7%), hotel technologies (76.2% versus 71%), attraction technologies (55.6% versus 47.3%), transport technologies (69.8% and 57.4%), shopping technologies (50.3% versus 44.4%), public service technologies (59.3% versus 46.2%), social media (72% versus 69.2%), and mobile apps (70.9% versus 55%) for UAE and Egypt respondents respectively.

Table 2. Technologies used by tourists

| Country                                                                                 | UAE (%) | Egypt (%) |
|-----------------------------------------------------------------------------------------|---------|-----------|
| Booking technologies (websites, information search, bookings, e-payment).               | 85.2    | 96.4      |
| Airport smart technologies (check-in, check-out, controlling, checks).                  | 73.5    | 75.7      |
| Hotels smart technologies (service booking, energy, food and beverage ordersetc.).      | 76.2    | 71.0      |
| Attractions smart technologies (VR, AR, platforms, ticketing, entry)                    | 55.6    | 47.3      |
| Transport technologies (mobile apps, ticketing, e-maps).                                | 69.8    | 57.4      |
| Shopping technologies (information search, offers and discountsetc.).                   | 50.3    | 44.4      |
| Public services technologies (smart cards, health systems, weather, exchange ratesetc.) | 59.3    | 46.2      |
| Social media and content-sharing                                                        | 72.0    | 69.2      |
| Mobile apps                                                                             | 70.9    | 55.0      |

Source: developed by authors

#### 4.2 Scale statistics

Table 3 indicates that the scale is reliable, where internal consistency and composite reliability values exceed 0.7. AVEs values reflect the convergent validity of the scale, exceeding the value of 0.5.



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



Discriminant validity is also evident as the inter-construct correlations are less than the square root of AVEs (Table 4), and HTMT values are less than 0.9 (Table 5). Furthermore, the average full collinearity VIF is 3.14, ensuring the absence of common method bias (Abou-Shouk et al., 2024).

Table 3. Scale statistics

| Construct       | Indicators              | UAE   |       |       |       | Egypt |       |       |       |
|-----------------|-------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Construct       |                         | Value | ComR. | CroA. | AVE   | Value | ComR. | CroA. | AVE   |
| Technology      | TCH1                    | 0.920 |       |       |       | 0.828 |       |       |       |
| characteristics | TCH2                    | 0.888 |       |       |       | 0.802 |       |       |       |
| (TCH)           | TCH3                    | 0.904 | 0.955 | 0.942 | 0.811 | 0.787 | 0.911 | 0.877 | 0.671 |
|                 | TCH4                    | 0.877 |       |       |       | 0.837 |       |       |       |
|                 | TCH5                    | 0.912 |       |       |       | 0.839 |       |       |       |
| Tourist         | TTT1                    | 0.883 |       |       |       | 0.864 |       |       |       |
| technology      | TTT2                    | 0.939 | 0.936 | 0.897 | 0.830 | 0.871 | 0.900 | 0.833 | 0.750 |
| traits (TTT)    | TTT3                    | 0.911 |       |       |       | 0.863 |       |       |       |
| Task-           | Quality                 | 0.883 |       |       |       | 0.777 |       |       |       |
| technology fit  | Locability              | 0.899 |       |       |       | 0.845 |       |       |       |
| (TTF)           | Authorisation           | 0.872 |       |       |       | 0.802 |       |       |       |
| (Second-        | Compatibility           | 0.906 | 0.967 | 0.965 | 0.787 | 0.765 | 0.935 | 0.920 |       |
| order           | Ease of use             | 0.922 | 0.907 | 0.903 | 0.767 | 0.795 | 0.933 | 0.920 |       |
| construct)      | Timeliness              | 0.936 |       |       |       | 0.787 |       |       |       |
|                 | Reliability             | 0.809 |       |       |       | 0.832 |       |       |       |
|                 | Relationship with users | 0.862 |       |       |       | 0.805 |       |       |       |
| Technology      | TEU1                    | 0.925 |       |       |       | 0.866 |       |       |       |
| usage (TEU)     | TEU2                    | 0.943 | 0.949 | 0.915 | 0.861 | 0.843 | 0.891 | 0.816 | 0.731 |
|                 | TEU3                    | 0.915 |       |       |       | 0.856 |       |       |       |
| Memorable       | Hedonic                 | 0.860 |       |       |       | 0.845 |       |       |       |
| Experience      | Novelty                 | 0.907 |       |       |       | 0.811 |       |       |       |
| (MEX)           | Refreshment             | 0.896 |       |       |       | 0.746 |       |       |       |
| (Second-        | Meaningfulness          | 0.930 | 0.964 | 0.954 | 0.794 | 0.767 | 0.921 | 0.897 | 0.624 |
| order           | Involvement             | 0.915 |       |       |       | 0.814 |       |       |       |
| construct)      | Knowledge               | 0.883 |       |       |       | 0.761 |       |       |       |
|                 | Local culture           | 0.845 |       |       |       | 0.782 |       |       |       |
| Revisit         | RIN1                    | 0.931 |       |       |       | 0.913 |       |       |       |
| Intention       | RIN2                    | 0.942 | 0.961 | 0.923 | 0.891 | 0.885 | 0.917 | 0.864 | 0.786 |
| (RIN)           | RIN3                    | 0.958 |       |       |       | 0.862 |       |       |       |

Note: ComR: composite reliability, CroA: Cronbach's alpha

Source: developed by authors

Table 4. Validity statistics

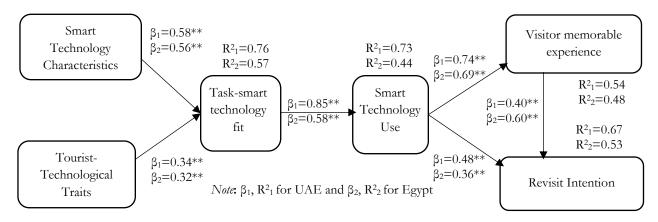
| Constructs | Country: U: UAE,<br>E: Egypt | TCH     | TTT     | TTF     | TEU     | MEX     | RIN     |
|------------|------------------------------|---------|---------|---------|---------|---------|---------|
| TOH        | U                            | (0.901) |         |         |         |         |         |
| ТСН        | Е                            | (0.819) |         |         |         |         |         |
| TTT        | U                            | 0.758   | (0.911) |         |         |         |         |
| 111        | Е                            | 0.446   | (0.866) |         |         |         |         |
| TTF        | U                            | 0.843   | 0.783   | (0.887) |         |         |         |
|            | Е                            | 0.688   | 0.566   | (0.801) |         |         |         |
| TEU        | U                            | 0.760   | 0.678   | 0.853   | (0.928) |         |         |
|            | Е                            | 0.548   | 0.493   | 0.573   | (0.855) |         |         |
| MEX        | U                            | 0.820   | 0.812   | 0.841   | 0.730   | (0.891) |         |
|            | Е                            | 0.720   | 0.640   | 0.728   | 0.637   | (0.790) |         |
| RIN        | U                            | 0.782   | 0.686   | 0.872   | 0.747   | 0.750   | (0.944) |
|            | Е                            | 0.612   | 0.490   | 0.702   | 0.546   | 0.709   | (0.887) |

Source: developed by authors



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz




Table 5. **HTMT ratios** 

| Constructs | Country: U: UAE,<br>E: Egypt | ТСН   | TTT   | TTF   | TEU   | MEX   |
|------------|------------------------------|-------|-------|-------|-------|-------|
| ТТТ        | U                            | 0.825 |       |       |       |       |
| 111        | Е                            | 0.522 |       |       |       |       |
| TTF        | U                            | 0.884 | 0.842 |       |       |       |
|            | Е                            | 0.765 | 0.647 |       |       |       |
| TEU        | U                            | 0.819 | 0.749 | 0.809 |       |       |
|            | E                            | 0.647 | 0.598 | 0.661 |       |       |
| MEX        | U                            | 0.868 | 0.848 | 0.876 | 0.780 |       |
|            | Е                            | 0.812 | 0.739 | 0.811 | 0.740 |       |
| RIN        | U                            | 0.838 | 0.754 | 0.814 | 0.813 | 0.799 |
|            | Е                            | 0.704 | 0.647 | 0.787 | 0.652 | 0.805 |

Source: developed by authors

### 4.3 Testing hypotheses and multi-group analysis

Figure 2. Structural model of predictors and consequences of smart technology usage



Source: developed by authors

The structural model shown in Figure 2 illustrates that smart technology task fit is influenced by smart technology characteristics ( $\beta$ =0.58, P<0.01 for UAE,  $\beta$ =0.56, P<0.01 for Egypt) and tourist technological traits ( $\beta$ =0.34, P<0.01 for UAE,  $\beta$ =0.32, P<0.01 for Egypt), and the first and second hypotheses are supported. Both constructs explain 76% and 57% of the variance of smart technology task fit for the UAE and Egypt respondents, respectively. This result means that the quality, speed, accuracy, and interactivity of smart technologies, in addition to the users' willingness, interest, and desire to use smart technology, contribute to the users' perception of the capability of smart technologies to achieve their travel tasks. Figure 2 also illustrates that the smart technology task fit perceptions affect the positive perception of using smart technologies before and during their travels ( $\beta$ =0.85, P<0.01 for UAE,  $\beta$ =0.58, P<0.01 for Egypt) and that the task fit perceptions explain 73% and 44% of the variance in smart technology usage by UAE and Egyptian respondents, and H3 is accepted. Furthermore, the usage of smart technologies is influencing the memorable experiences of tourists (β=0.74, P<0.01 for UAE, β=0.69, P<0.01 for Egypt), explaining 54% and 48% of the variance in UAE and Egypt tourists' memorable experiences, and H4 is supported. Revisit intention was also found to be affected by smart technology usage ( $\beta$ =0.48, P<0.01 for UAE,  $\beta$ =0.36, P<0.01 for Egypt, and H5 is supported), and memorable experiences of tourists ( $\beta$ =0.85, P<0.01 for UAE,  $\beta$ =0.58, P<0.01 for Egypt, and H6 is accepted). 67% and 53% of the variance in tourists' revisit intention is explained by smart technology



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



usage and memorable experiences. Simply, smart technology usage contributes to creating memorable experiences for tourists and fostering their revisit intention to tourist destinations.

Running the multi-group analysis to measure the path difference between the UAE and Egypt, the p-value for standard errors revealed insignificant differences in the effect of technology characteristics and user technological traits on technology task fit (p=0.318 and 0.417, respectively), and technology use on memorable experience (p=0.300). However, a significant difference was observed in the effect of technology task fit on smart technology use (p=0.001), smart technology use effect on revisit intention (p<0.001), and memorable experience effect on revisit intention (p=0.018).

# 5. Discussion

The present examination aims to investigate how technology characteristics and tourists' technological traits affect the smart technology task fit, and how the task fit contributes to tourists' use of these technologies, creating memorable experiences and subsiding their visit intentions. Findings revealed that technology task-fit perceptions are influenced by technology and tourist characteristics and lead to the use of smart technologies, enriching their experiences, and increasing their visit intentions. This paper employs the TPC model to explain these associations.

According to the results, smart technology characteristics affect tourists' perceptions of achieving the task they want to accomplish before and during their travel (Task fit concept). The technology characteristics include the capabilities of smart technologies to deliver the requested information in realtime, their accessibility (anytime, anywhere), their interactive abilities, and various devices that can be used to access this information (phones, tablets...). Based on the responses of the UAE and Egypt tourists, having smart technologies with such characteristics will result in task fit and achievement. Smart technology task fit denotes that the obtained information requested by tourists is: 1) of high quality (correct, up-to-date, and sufficient), 2) locable (the exact requested information, easy to find and locate), 3) authorised (smart technologies authorisation to access relevant information), 4) compatible (can be accessed from different and various sources), 5) easy-to-use (easiness to become skilful using these technologies), timely (information is retrieved with the required time frame or on time), 6) reliable (information is available and tourists can count on that information to make their decisions), and 7) good relationship with users (supervisors and helpers of smart technologies are skilful, helpful, and cooperated). Hence, when tourists perceive that smart technologies are of high quality, accessible, and interactive, they will perceive it as the best-fit technologies for their travel tasks (searching for information on booking, transport, attractions, shopping, hotels, public services, etc). This result is comparable to that of No and Kim (2015), who found that having smart technologies with these attributes will result in a good fit for the tasks requested by tourists.

The second result found that the traits of technology adopter contribute to perceiving the technologies as a good fit for their tasks. These traits encompass how willing the tourist is to use these technologies, their level of interest in using technologies, and their desire to use these technologies to achieve travel-related tasks. When tourists are interested and enthusiastic about using these technologies, they will have positive perceptions toward their output quality, reliability, accessibility, etc. (task fit perception). This outcome is correlated with Abou-Shouk et al. (2021b), who found that adopter technological traits contribute to positive perceptions of usage.

The third result of this study reveals that when tourist perceives smart technology as task-fit technology that achieves their tasks in time, with high-quality reliable information, easy to access and locate the requested authorised information to make their decisions, they will have positive intentions to frequently and regularly use it to facilitate their travel tasks and search and obtain the necessary information for planning their trips. This finding is relevant to Goodhue and Thompson (1995), who conceptualised the Technology-to-Performance Chain model.



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



The interesting result is the role of smart technology usage in enhancing tourists' memorable experiences. It is revealed that using smart technologies by tourists visiting the UAE and Egypt has increased their memorable experiences. When describing the experience as memorable, that means that tourists have hedonic feelings (they enjoyed their visit, were excited and had fun), novelty perceptions (unique experience, and new experiences), refreshment feelings (experience free of stress), meaningfulness feelings (meaningful experience), involvement (interesting experience and enjoying what to do), and tourists' perceptions that their knowledge about destination and local culture has increased. Results showed that tourists perceive their usage of smart technology in the destination as a substantive tool that helps them create, increase, or enhance their memorable experiences with the destination and have an emotional link with it. This outcome is also consistent with Wang et al. (2020), Chang et al. (2022), Shin et al. (2023), Tulung et al. (2025), and Pérez et al. (2025), who found that smart technology usage enhances the memorable experience of tourists.

Another result is that using smart technology and enhancing memorable experiences motivates tourists to revisit the destination. Feeling attached to a place and feeling emotional to visit leads to a repeat visit to this place. Both the UAE and Egypt tourist respondents assured that feeling linked to a place and having a memorable experience will result in a repeat visit to that destination. This result is concurrent with Shin et al. (2023), Pai et al. (2021), Torabi et al. (2022), and Pérez et al. (2025), who found that memorable experience and smart technology adoption are predictors of revisit intention.

#### 6. Conclusion

The concept of smart technology has been increasingly examined for its impact on the tourism industry; however, limited research has examined the relationships between the adoption of smart technologies and various aspects of the tourist experience and revisit behaviour. This study developed an integrative model encompassing the antecedents of smart tourism technology adoption—namely, technology characteristics, tourist characteristics, and task-technology fit—as well as their consequences, including memorable experiences and intentions to revisit. The findings indicate that the characteristics of smart technology and tourists' technological traits significantly influence the task fit of these technologies. Task-technology fit serves as a precursor to the adoption of smart technology. Utilising smart technologies enhances tourists' memorable experiences and fosters repeat visitation. Tourists typically choose technologies related to their journey both before and during travel, including booking platforms, hotel services, transportation, shopping, public service technologies, social media, and mobile applications. The study's results support the six proposed hypotheses and highlight the role of smart technology in facilitating tourist tasks, enriching their memorable experiences, and motivating repeat visits.

# 6.1 Implications

This study constructively examines how tourists perceive smart technologies as valuable tools that enhance their experiences both before and during their travels. Utilising the Technology-to-Performance Chain model, the research effectively illustrates how technology can be harnessed to optimize task performance. Moreover, it examines the positive effects of adopting smart technology, particularly in relation to tourists' intentions to revisit destinations and the creation of memorable experiences. This integrative model significantly contributes to our understanding of the factors influencing task fit and reveals how this relationship encourages the frequent adoption of technology, ultimately enriching tourists' experiences and fostering repeat visits. By comparing tourist perceptions in the UAE and Egypt, the study identifies key predictors and outcomes of smart technology adoption that align with findings from other countries such as the US, Indonesia, and Peru (Pérez et al., 2025; Shin et



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



al., 2023; Tulung et al., 2025). Additionally, it thoroughly examines eight latent variables related to task fit, alongside seven variables associated with memorable experiences, thereby enhancing the existing body of knowledge on the antecedents of technology adoption. The study also tests a second-order structural model to robustly validate the proposed hypotheses, providing valuable insights for researchers in the field.

Practically, this study provides valuable insights into how smart technologies can significantly enhance the travel experience and foster a strong intention for tourists to return. It highlights key characteristics of smart technologies, such as interactivity, ease of access, and real-time responsiveness, which facilitate their regular and frequent use by travellers. The findings offer constructive guidance for technology developers, travel service providers, and marketers, enabling them to refine the smart technologies available to support tourists effectively throughout their travel journeys. Moreover, the study clearly defines the conditions under which tourists view smart technology as a task-technology fit. It emphasizes that smart technology can deliver superior task-technology fit outcomes when it provides high-quality information that is not only easily accessible but also accurately sourced, empowering tourists to make well-informed decisions within an appropriate timeframe.

The study provides valuable insights into the concept of a memorable experience, testing seven key dimensions that contribute to this idea: hedonic enjoyment, novelty, refreshment, tourist involvement, meaningfulness, knowledge enhancement, and awareness of local culture. These dimensions can be effectively supported by smart technologies, which encourage travel service providers and marketers to explore how their technological capabilities can enhance memorable experiences across these dimensions. Importantly, achieving memorable experiences is likely to foster repeat visitation, an essential strategic outcome for destination marketers. The findings yield robust, valid outcomes from two different countries, illustrating that the integration of smart technology effectively meets the criteria for task fit. A comprehensive understanding of both task fit and memorable experiences equips managers and destination marketers with the knowledge they need to identify key components and provide relevant information through their smart technology platforms. This, in turn, can strengthen the connection between destinations and travellers' intentions to revisit while facilitating memorable experiences. Moreover, this study identifies several practical opportunities for travel managers and marketers to utilise smart technology when promoting their destinations and designing tour packages. These opportunities include offering customised and personalised trip experiences, facilitating seamless navigation within destinations, providing smart accommodation options, creating virtual and augmented reality experiences to visualise tourist attractions, delivering real-time translation services, ensuring secure e-transactions, and fostering greater engagement in the overall travel experience. By capitalising on these advancements, travel professionals can enhance the overall visitor experience and drive sustainable growth in tourism.

### 6.2 Limitations

This study utilises a second-order structural model to examine the effects of smart technologies and memorable experience concepts, as this approach offers clearer insights for managers and marketers compared to a first-order model, which may yield overly complex findings. The concept of smart technologies is broad and encompasses a diverse array of technologies adopted in the tourism sector, such as booking systems, hotels, transportation, attractions, shopping, public services, and social media platforms. Future research could benefit from narrowing its focus to a specific type of technology, allowing for a deeper exploration of its impacts on repeat visits, memorable experiences and other behavioural intentions.

#### References





- 1. Abdillah, W., & Saepullah, A. (2018). Model Technology to Performance Chain (TPC) in Implementing Accrual-Based Sistem Informasi Manajemen Daerah (SIMDA) Finance: Empirical Evidence from Local Government of Indonesia. *JDM (Jurnal Dinamika Manajemen, 9*(1), 56-68. doi:10.15294/jdm.v9i1.14652
- 2. Abou-Shouk, M., Abdelhakim, A., Elgarhy, S., Rabea, A., & Abdulmawla, M. (2025a). ChatGPT usage intention for tourism and hospitality customers. *Tourism Recreation Research*, 1-18. doi:10.1080/02508281.2025.2465962
- 3. Abou-Shouk, M., Elbaz, A., Al-Leheabi, S., AbuElEnain, E., & Shabana, M. (2024). Trusting ChatGPT Usage in Personalized Travel Planning: The Moderating Role of Privacy and Data Security. *Tourism and Hospitality Research*, 14673584241306346. doi:10.1177/14673584241306346
- 4. Abou-Shouk, M., Elbaz, A., & Maher, A. (2021a). Breaking the silence of travel agency employees: The moderating role of gender. *Tourism and Hospitality Research*, 21(4), 487-500. doi:10.1177/1467358420988048
- 5. Abou-Shouk, M., Elbaz, A., Zouair, N., Aburumman, A., & Bayoumy, M. (2025b). Cross-country insights into sustainable tourism performance and local community support for sustainable development. *Tourism and Hospitality Research*, 14673584251356779. doi:10.1177/14673584251356779
- 6. Abou-Shouk, M., & Eraqi, M. (2015). Perceived barriers to e-commerce adoption in SMEs in developing countries: The case of travel agents in Egypt. *International Journal of Services and Operations Management*, 21(3), 332-353. doi:10.1504/IJSOM.2015.069652
- 7. Abou-Shouk, M., Gad, H., & Abdelhakim, A. (2021b). Exploring customers' attitudes to the adoption of robots in tourism and hospitality. *Journal of Hospitality and Tourism Technology, 12*(4), 762-776. doi:10.1108/JHTT-09-2020-0215
- 8. Abou-Shouk, M., Zoair, N., & Abulenein, E. (2022a). How ready are customers to re-travel for tourism? Insights from the UAE and Egypt. *Geo Journal of Tourism and Geosites, 40*(1), 175-180. doi:10.30892/gtg.40121-817
- 9. Abou-Shouk, M., Zoair, N., Aburumman, A., & Abdel-Jalil, M. (2022b). The effect of personality traits and knowledge-sharing on employees' innovative performance: A comparative study of Egypt and Jordan. *Tourism Management Perspectives*, 44, 101024. doi:10.1016/j.tmp.2022.101024
- 10. Abou-Shouk, M., Zoair, N., Farrag, M. M., & Hewedi, M. (2018). The role of international exhibition venues in marketing exhibitors' destinations. *Journal of Vacation Marketing*, 24(2), 136-147. doi:10.1177/1356766717690573
- 11. Aburumman, A., Abou-Shouk, M., Zouair, N., & Abdel-Jalil, M. (2023). The effect of health-perceived risks on domestic travel intention: The moderating role of destination image. *Tourism and Hospitality Research*, 25(1), 57-71. doi:10.1177/14673584231172376
- 12. Alturki, U., & Aldraiweesh, A. (2022). Adoption of Google Meet by Postgraduate Students: The Role of Task Technology Fit and the TAM Model. *Sustainability*, 14(23). doi:10.3390/su142315765
- 13. Alyoussef, I. (2023). Acceptance of e-learning in higher education: The role of task-technology fit with the information systems success model. *Heliyon*, 9(3), e13751. doi:10.1016/j.heliyon.2023.e13751
- 14. Andersone, N., Nardelli, G., & Ipsen, C. (2021). Task-technology fit theory: An approach for mitigating technostress. In R. Appel-Meulenbroek & V. Danivska (Eds.), A Handbook of Theories on Designing Alignment between People and the Office Environment (pp. 39-53). London: Routledge.
- 15. Ayazlar, G., & Ayazlar, A. (2023). A Cross-cultural Investigation of Tourists' Memorable Experiences Between Two Nationalities. *Almatourism Journal of Tourism, Culture and Territorial Development*, 8, 136-151. doi:10.6092/issn.2036-5195/6558
- 16. Ayazlar, G., & Ayazlar, R. (2017). A cross-cultural investigation of tourists' memorable experiences between two nationalities. 8(15), 136-151. doi:10.6092/issn.2036-5195/6558





- 17. Azis, N., Amin, M., Chan, S., & Aprilia, C. (2020). How smart tourism technologies affect tourist destination loyalty. *Journal of Hospitality and Tourism Technology*, 11(4), 603-625. doi:10.1108/JHTT-01-2020-0005
- 18. Bacik, R., Gburova, J., Gavura, S., & Iannaccone, B. (2025). Impact of digital marketing on the purchasing behavior of modern consumers in the field of tourism. *Journal of International Studies*, 18(1), 116-129. doi:10.14254/20718330.2025/18-1/7
- 19. Barnes, S., Mattsson, J., & Sørensen, F. (2016). Remembered experiences and revisit intentions: A longitudinal study of safari park visitors. *Tourism Management*, 57, 286-294. doi:10.1016/j.tourman.2016.06.014
- 20. Bigne, E., Fuentes-Medina, M., & Morini-Marrero, S. (2020). Memorable tourist experiences versus ordinary tourist experiences analysed through user-generated content. *Journal of Hospitality and Tourism Management*, 45, 309-318. doi:10.1016/j.jhtm.2020.08.019
- 21. Chang, Y.-S., Cheah, J.-H., Lim, X.-J., Morrison, A., & Kennell, J. (2022). Are unmanned smart hotels du jour or are they here forever? Experiential pathway analysis of antecedents of satisfaction and loyalty. *International Journal of Hospitality Management*, 104, 103249. doi:10.1016/j.ijhm.2022.103249
- 22. Chen, H., & Rahman, I. (2018). Cultural tourism: An analysis of engagement, cultural contact, memorable tourism experience and destination loyalty. *Tourism Management Perspectives, 26*, 153-163. doi:10.1016/j.tmp.2017.10.006
- 23. Chen, X., Cheng, Z.-F., & Kim, G.-B. (2020). Make It Memorable: Tourism Experience, Fun, Recommendation and Revisit Intentions of Chinese Outbound Tourists. *12*(5), 1904. doi:10.3390/su12051904
- 24. Cifci, I. (2021). Testing self-congruity theory in Bektashi faith destinations: The roles of memorable tourism experience and destination attachment. *Journal of Vacation Marketing*, 28(1), 3-19. doi:10.1177/13567667211011758
- 25. Coudounaris, D., & Sthapit, E. (2017). Antecedents of memorable tourism experience related to behavioral intentions. *Psychology & Marketing*, 34(12), 1084-1093. doi:10.1002/mar.21048
- 26. Dhaigude, A., Kapoor, R., & Ambekar, S. (2016). A conceptual model for adoption of information communication technology in the travel and tourism industry. *Tourism Recreation Research*, 41(1), 49-59. doi:10.1080/02508281.2015.1126919
- 27. Domi, S., Keco, R., Capelleras, J., & Mehmeti, G. (2019). Effects of innovativeness and innovation behavior on tourism SMEs performance: the case of Albania. *Economics and Sociology*, 12(3), 67-85. doi:10.14254/2071789X.2019/12-3/5
- 28. El-Gayar, O., Deokar, A., & Wills, M. (2010). Evaluating Task-Technology Fit and User Performance for an Electronic Health Record System. *nternational Journal of Healthcare Technology and Management*, 11(1/2), 50-65. doi:10.1504/IJHTM.2010.033274
- 29. Elshaer, A., & Marzouk, A. (2022). Memorable tourist experiences: the role of smart tourism technologies and hotel innovations. *Tourism Recreation Research*, 1-13. doi:10.1080/02508281.2022.2027203
- 30. Foroudi, P., Gupta, S., Sivarajah, U., & Broderick, A. (2018). Investigating the effects of smart technology on customer dynamics and customer experience. *Computers in Human Behavior*, 80, 271-282. doi:10.1016/j.chb.2017.11.014
- 31. Goodhue, D., & Thompson, R. (1995). Task-Technology Fit and Individual Performance. MIS Quarterly, 19(2), 213-236. doi:10.2307/249689
- 32. Hashim, N., Murphy, J., Doina, O., & O'Connor, P. (2014). Bandwagon and leapfrog effects in Internet implementation. *International Journal of Hospitality Management*, 37, 91-98. doi:10.1016/j.ijhm.2013.10.012
- 33. Hosany, S., Sthapit, E., & Björk, P. (2022). Memorable tourism experience: A review and research agenda. *39*(8), 1467-1486. doi:10.1002/mar.21665





- 34. Hosseini, S., Cortes Macias, R., & Almeida Garcia, F. (2023). Memorable tourism experience research: a systematic review of the literature. *Tourism Recreation Research*, 48(3), 465-479. doi:10.1080/02508281.2021.1922206
- 35. Howard, M., & Hair, J. (2023). Integrating the Expanded Task-technology Fit Theory and the Technology Acceptance Model: A Multi-wave Empirical Analysis. *AIS Transactions on Human-Computer Interaction*, 15(1), 83-110. doi:10.17705/1thci.00184
- 36. Huang, C., Goo, J., Nam, K., & Yoo, C. (2017). Smart tourism technologies in travel planning: The role of exploration and exploitation. *Information & Management*, 54(6), 757-770. doi:10.1016/j.im.2016.11.010
- 37. Jeong, M., & Shin, H. (2020). Tourists' Experiences with Smart Tourism Technology at Smart Destinations and Their Behavior Intentions. *Journal of Travel Research*, 59(8), 1464-1477. doi:10.1177/0047287519883034
- 38. Kim, H., Koo, C., & Chung, N. (2021). The role of mobility apps in memorable tourism experiences of Korean tourists: Stress-coping theory perspective. *Journal of Hospitality and Tourism Management*, 49, 548-557. doi:10.1016/j.jhtm.2021.11.003
- 39. Kim, H., & So, K. (2022). Two decades of customer experience research in hospitality and tourism: A bibliometric analysis and thematic content analysis. *International Journal of Hospitality Management*, 100, 103082. doi:10.1016/j.ijhm.2021.103082
- 40. Kim, J.-H. (2018). The impact of memorable tourism experiences on loyalty behaviors: The mediating effects of destination image and satisfaction. 57(7), 856-870. doi:api.semanticscholar.org/CorpusID:148920347
- 41. Kim, J.-H., & Ritchie, J. (2014). Cross-Cultural Validation of a Memorable Tourism Experience Scale (MTES). *Journal of Travel Research*, *53*(3), 323-335. doi:10.1177/0047287513496468
- 42. Kim, J.-H., Ritchie, J., & McCormick, B. (2010). Development of a Scale to Measure Memorable Tourism Experiences. *Journal of Travel Research*, *51*(1), 12-25. doi:10.1177/0047287510385467
- 43. Kim, J.-H., Ritchie, J., & McCormick, B. (2012). Development of a scale to measure memorable tourism experiences. *51*(1), 12-25. doi:10.1177/0047287510385467
- 44. Kim, J., & Tussyadiah, I. (2013). Social Networking and Social Support in Tourism Experience: The Moderating Role of Online Self-Presentation Strategies. *Journal of Travel and Tourism Marketing*, 30(1-2), 78-92. doi:10.1080/10548408.2013.751220
- 45. Kim, M., Chung, N., Lee, C.-K., & Preis, M. (2015). Motivations and Use Context in Mobile Tourism Shopping: Applying Contingency and Task–Technology Fit Theories. *International Journal of Tourism Research*, 17(1), 13-24. doi:10.1002/jtr.1957
- 46. Koh, L., Lee, J., Wang, X., & Yuen, K. (2023). Urban drone adoption: Addressing technological, privacy and task–technology fit concerns. *Technology in Society*, 72, 102203. doi:10.1016/j.techsoc.2023.102203
- 47. Kusumah, E., Hurriyati, R., Disman, D., & Gaffar, V. (2022). Determining revisit intention: the role of virtual reality experience, travel motivation, travel constraint and destination image. *Tourism and Hospitality Management, 28*(2), 297-314. doi:10.20867/thm.28.2.3
- 48. Larsen, S. (2007). Aspects of a Psychology of the Tourist Experience. Scandinavian Journal of Hospitality and Tourism, 7(1), 7-18. doi:10.1080/15022250701226014
- 49. Lee, H., Lee, J., Chung, N., & Koo, C. (2018). Tourists' happiness: are there smart tourism technology effects? *Asia Pacific Journal of Tourism Research*, 23(5), 486-501. doi:10.1080/10941665.2018.1468344
- 50. Liberato, P., Alen, E., & Liberato, D. (2018). Smart tourism destination triggers consumer experience: the case of Porto. *European Journal of Management and Business Economics*, 27(1), 6-25. doi:10.1108/EJMBE-11-2017-0051
- 51. Lin, H.-C., Han, X., Lyu, T., Ho, W.-H., Xu, Y., Hsieh, T.-C., Zhang, L. (2020). Task-technology fit analysis of social media use for marketing in the tourism and hospitality industry: a systematic





- literature review. International Journal of Contemporary Hospitality Management, 32(8), 2677-2715. doi:10.1108/IJCHM-12-2019-1031
- 52. Moravec, T., & Valenta, P. (2015). The comparison of efficiency of disqualification of directors in the new Czech Business Corporation Act and in the legal system of England. *Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis*, 63(5), 1711–1717. https://doi.org/10.11118/actaun201563051711
- 53. No, E., & Kim, J. (2015). Comparing the attributes of online tourism information sources. *Computers in Human Behavior, 50*, 564-575. doi:10.1016/j.chb.2015.02.063
- 54. Nugroho, B., Shihab, M., & Budi, I. (2018, 27-28 Oct. 2018). Task-Technology Fit Approach to Evaluate Tourists' Purchase Intention in Open-Trip Marketplace Sites. Paper presented at the 2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS).
- 55. Pai, C., Kang, S., Liu, Y., & Zheng, Y. (2021). An Examination of Revisit Intention Based on Perceived Smart Tourism Technology Experience. *Sustainability*, 13(2). doi:10.3390/su13021007
- 56. Perez-Aranda, J., González Robles, E., & Alarcón Urbistondo, P. (2023). Understanding antecedents of continuance and revisit intentions: The case of sport apps. *Journal of Retailing and Consumer Services*, 72, 103288. doi:10.1016/j.jretconser.2023.103288
- 57. Pérez, G., Marina, A., Alvarado, M., Mishelle, S., & Cuellar, H. (2025, 2025//). Smart Tourism Technologies and Memorable Tourist Experiences in Relation to Revisit Intention in National Tourist Destinations. Paper presented at the Marketing and Smart Technologies, Singapore.
- 58. Pizam, A. (2010). Creating memorable experiences. *International Journal of Hospitality Management*, 29(3), 343. doi:10.1016/j.ijhm.2010.04.003
- 59. Punpairoj, W., Namahoot, K., Wattana, C., & Rattanawiboonsom, V. (2023). The Influence of Innovativeness on Revisit Intention: The Mediating Role of Word-of-Mouth in Augmented Reality for Tourism in Thailand. *International Journal of Professional Business Review, 8*(6), e02380. doi:10.26668/businessreview/2023.v8i6.2380
- 60. Rogers, E. (2003). Diffusion of innovations (5th ed.). New York: Free Press.
- 61. Saura, J., Skare, M., & Riberio-Navarrete, S. (2022). How does technology enable competitive advantage? Reviewing state of the art and outlining future directions. *Journal of Competitiveness*, 14(4), 172–188. doi:10.7441/joc.2022.04.10
- 62. Salah, M., & Abou-Shouk, M. (2019). The effect of customer relationship management practices on airline customer loyalty. *Journal of Tourism Heritage and Services Marketing*, 5(2), 11–19. doi:10.5281/zenodo.3601669
- 63. Shin, H., Kim, J., & Jeong, M. (2023). Memorable tourism experience at smart tourism destinations: Do travelers' residential tourism clusters matter? *Tourism Management Perspectives*, 46, 101103. doi:10.1016/j.tmp.2023.101103
- 64. Sthapit, E., & Coudounaris, D. (2018). Memorable tourism experiences: antecedents and outcomes. *Scandinavian Journal of Hospitality and Tourism,* 18(1), 72-94. doi:10.1080/15022250.2017.1287003.
- 65. Strapchuk, O., Koniordos, M., Strapchuk, S., & Nitsenko, V. (2025). Sustainable business models in the digital transformation of higher education: Evidence from Ukraine. *Transformations and Sustainability*, 1(2), 87-99. https://doi.org/10.63775/hsfgga88.
- 66. Suksutdhi, T. (2022). Self-service technology (sst) implication toward intention to revisit in small hotels: A case study of nakhon ratchasima province, Thailand. *Geo Journal of Tourism and Geosites,* 41(2), 523-530. doi:10.30892/gtg.41225-859
- 67. Tavitiyaman, P., Qu, H., Tsang, W., & Lam, C. (2021). The influence of smart tourism applications on perceived destination image and behavioral intention: The moderating role of information search behavior. *Journal of Hospitality and Tourism Management*, 46, 476-487. doi:10.1016/j.jhtm.2021.02.003



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



- 68. Torabi, Z.-A., Shalbafian, A., Allam, Z., Ghaderi, Z., Murgante, B., & Khavarian-Garmsir, A. (2022). Enhancing Memorable Experiences, Tourist Satisfaction, and Revisit Intention through Smart Tourism Technologies. *Sustainability*, 14(5). doi:10.3390/su14052721
- 69. Tsai, C.-T. (2016). Memorable Tourist Experiences and Place Attachment When Consuming Local Food. *International Journal of Tourism Research*, 18(6), 536-548. doi:10.1002/jtr.2070
- 70. Tulung, L., Lapian, S., Lengkong, V., & Tielung, M. (2025). The Role of Smart Tourism Technologies, Destination Image and Memorable Tourism Experiences As Determinants of Tourist Loyalty. Revista de Gestão Social e Ambiental, 19(4), e011822. doi:10.24857/rgsa.v19n4-013
- 71. Vada, S., Prentice, C., & Hsiao, A. (2019). The influence of tourism experience and well-being on place attachment. *Journal of Retailing and Consumer Services*, 47, 322-330. doi:10.1016/j.jretconser.2018.12.007
- 72. Vlach, J. (2022). Challenges and opportunities for the economies. In E. Opatrná (Ed.), *Proceedings of the 16th International Scientific Conference INPROFORUM Digitalization: Society and markets, business and public administration* (pp. 122–127). University of South Bohemia. https://doi.org/10.32725/978-80-7394-976-1
- 73. Vlach, J., Smutka, L., Mrkvička, T., Čábelková, I., Parmová, D.Š., & Moravcová, J. (2025). Financial dynamics and strategic growth in sugar industry: Comparative analysis of Central and Eastern Europe (2013–2022). *Ukrainian Food Journal*, 14(1), 164–183. https://doi.org/10.24263/2304-974X-2025-14-1-14
- 74. Wang, C., Liu, J., Wei, L., & Zhang, T. (2020). Impact of tourist experience on memorability and authenticity: a study of creative tourism. *Journal of Travel & Tourism Marketing*, 37(1), 48-63. doi:10.1080/10548408.2020.1711846
- 75. World Economic Forum. (2024). Travel & Tourism Development Index 2024: Insight report. Retrieved from Geneva, Switzerland:
- 76. Zhang, H., Wu, Y., & Buhalis, D. (2018). A model of perceived image, memorable tourism experiences and revisit intention. *Journal of Destination Marketing & Management*, 8, 326-336. doi:10.1016/j.jdmm.2017.06.004
- 77. Zhang, Y., Sotiriadis, M., & Shen, S. (2022). Investigating the Impact of Smart Tourism Technologies on Tourists' Experiences. *Sustainability*, 14(5), 3048-3070. doi:10.3390/su14053048
- 78. Zheng, K., Kumar, J., Kunasekaran, P., & Valeri, M. (2022). Role of smart technology use behaviour in enhancing tourist revisit intention: the theory of planned behaviour perspective. *European Journal of Innovation Management, ahead-of-print*(ahead-of-print). doi:10.1108/EJIM-03-2022-0122.
- 79. Xie, Z., Jia, P., Song, J., Zhao, R., Jin, H. (2024). Evaluating of the tourism economic spatial network structure of the urban agglomerations. *Transformations in Business and Economics*, 23 (62), 319-343.

# Brief description of Author/Authors:

# Nagwa Zouair, Associate professor

ORCID ID: <a href="https://orcid.org/0000-0002-2830-2452">https://orcid.org/0000-0002-2830-2452</a>

Department of History, College of Arts, Humanities and Social Sciences, University of Khorfakkan, Sharjah, UAE.

Email: nagwa.zouair@ukf.ac.ae

Nagwa Zouair holds a PhD in Language, History, and Civilization of the Ancient World from the University of Lyon II in France. She is currently an associate professor at the College of Arts, Humanities, and Social Sciences, University of Khorfakkan, UAE. Her research interests include quality assurance, entrepreneurship, tourism guidance, heritage management, museum studies, cutting-edge technologies in tourism destinations and heritage sites, and the history and archaeology of the ancient world. Her works



Issue 31, volume 16, ISSN 1804-5650 (Online) www.jots.cz



have been published in several journals, including the Journal of Vacation Marketing, Journal of Ancient Egyptian Interconnections, the International Journal of Tourism Research, Current Issues in Tourism, and Études Alexandrine.

# Mohamed Abou-Shouk, Associate Professor

ORCID ID: <a href="https://orcid.org/0000-0002-5438-3268">https://orcid.org/0000-0002-5438-3268</a>

Department of History and Islamic Civilization, Tourism Guidance Program, College of Arts, Humanities and Social Sciences, University of Al Dhaid, Sharjah, UAE.

Email: maboushouk@uodh.ac.ae

Mohamed Abou-Shouk holds a PhD in Tourism and Hospitality from Plymouth University, UK. He is currently an Associate Professor at the College of Arts, Humanities and Social Sciences, University of Al Dhaid, UAE. His research interests are technology adoption behaviour in tourism and hospitality, etourism, and SEM-based quantitative research in tourism. His work has been published in a range of reputable journals, including Tourism Management, International Journal of Contemporary Hospitality Management, Current Issues in Tourism, International Journal of Tourism Research, Journal of Travel and Tourism Marketing, Journal of Hospitality and Tourism Technology, and other journals.

# Mesut Idriz, Professor

ORCID ID: <a href="https://orcid.org/0000-0002-7151-5963">https://orcid.org/0000-0002-7151-5963</a>

Department of History and Islamic Civilization, College of Arts, Humanities, and Social Sciences, University of Sharjah, Sharjah, UAE

Email: m.idriz@sharjah.ac.ae

Mesut Idriz is a professor of Islamic Civilization and History at the College of Arts, Humanities, and Social Sciences, University of Sharjah, United Arab Emirates. His research interests include Islamic history and Islamic civilization. His work is widely published in world-renowned research outlets.

## Issam Okleh, Associate Professor

ORCID ID: https://orcid.org/0000-0002-5947-6420

Department of History, College of Arts, Humanities and Social Sciences, University of Khorfakkan, Sharjah, UAE.

Email: m.idriz@sharjah.ac.ae

Issam Okleh earned his PhD in Islamic History from the University of Jordan and is currently an Associate Professor at Khorfakkan University, UAE. His research interests focus on editing Arabic manuscripts and the history of the Abbasid and Seljuk periods. He has published numerous research papers in internationally recognized journals, including the Jordanian Journal of History and Archaeology, International Journal of Data and Network Science, and Journal of Islamic Thoughts and Civilization. Additionally, he has authored several books on Islamic history and its civilization.